Application of Improved AprioriSome Algorithm in Supermarket O2O Marketing

Yaxin Zhao, Shi Ning
{"title":"Application of Improved AprioriSome Algorithm in Supermarket O2O Marketing","authors":"Yaxin Zhao, Shi Ning","doi":"10.1109/ICDSBA48748.2019.00084","DOIUrl":null,"url":null,"abstract":"Sequential pattern mining is the key technology for analyzing data. Using Python language and its IDE tool PyCharm can effectively mine the transaction data set generated by supermarket O2O marketing. In this paper, the existing AprioriSome algorithm is improved, and the constraints such as time interval and time window are added, and it is applied to the real transaction data set of a large supermarket chain in Henan. The results show that the running time of the improved AprioriSome algorithm is reduced, and the number of frequent sequences excavated is obviously increased and more practical.","PeriodicalId":382429,"journal":{"name":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA48748.2019.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sequential pattern mining is the key technology for analyzing data. Using Python language and its IDE tool PyCharm can effectively mine the transaction data set generated by supermarket O2O marketing. In this paper, the existing AprioriSome algorithm is improved, and the constraints such as time interval and time window are added, and it is applied to the real transaction data set of a large supermarket chain in Henan. The results show that the running time of the improved AprioriSome algorithm is reduced, and the number of frequent sequences excavated is obviously increased and more practical.
改进apriorissome算法在超市O2O营销中的应用
序列模式挖掘是数据分析的关键技术。利用Python语言及其IDE工具PyCharm可以有效地挖掘超市O2O营销产生的交易数据集。本文对已有的AprioriSome算法进行了改进,增加了时间间隔、时间窗等约束条件,并将其应用于河南某大型连锁超市的真实交易数据集。结果表明,改进的AprioriSome算法的运行时间缩短,挖掘的频繁序列数量明显增加,更加实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信