Application of Data Structure Algorithm For Sparse Matrix Computation in Power System

Subhranshu Sekhar Puhan, Sobhit Panda, S. Lenka, Renu Sharma
{"title":"Application of Data Structure Algorithm For Sparse Matrix Computation in Power System","authors":"Subhranshu Sekhar Puhan, Sobhit Panda, S. Lenka, Renu Sharma","doi":"10.1109/APSIT52773.2021.9641231","DOIUrl":null,"url":null,"abstract":"Sparse matrices are used/occur in most of the engineering/scientific applications. There has been a problem in optimization of compiler of sparse codes as they explicitly deal with particular data structure. This data structure dealing with the usefulness of a program so much that enhancement of the program is restricted. In this paper various methods of Data structure selection methodologies along with overview of delays data structure selection till compilation phase is discussed. Efficient code is generated for sparse matrix computations using this delayed Data structure method. The detailed methodology is applied in LU decomposition in Parallel Gauss techniques in Power System Analysis.","PeriodicalId":436488,"journal":{"name":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT52773.2021.9641231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse matrices are used/occur in most of the engineering/scientific applications. There has been a problem in optimization of compiler of sparse codes as they explicitly deal with particular data structure. This data structure dealing with the usefulness of a program so much that enhancement of the program is restricted. In this paper various methods of Data structure selection methodologies along with overview of delays data structure selection till compilation phase is discussed. Efficient code is generated for sparse matrix computations using this delayed Data structure method. The detailed methodology is applied in LU decomposition in Parallel Gauss techniques in Power System Analysis.
数据结构算法在电力系统稀疏矩阵计算中的应用
稀疏矩阵在大多数工程/科学应用中使用/出现。由于稀疏代码要显式地处理特定的数据结构,因此在编译器的优化方面存在一个问题。这种数据结构与程序的有用性关系太大,以致限制了程序的增强。本文讨论了各种数据结构选择方法以及延迟数据结构选择到编译阶段的概述。使用这种延迟数据结构方法可以生成高效的稀疏矩阵计算代码。将详细的方法应用于电力系统分析中并行高斯技术中的逻辑单元分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信