Global stabilization of partially linear composite systems

A. Saberi, P. Kokotovic, H. J. Sussmann
{"title":"Global stabilization of partially linear composite systems","authors":"A. Saberi, P. Kokotovic, H. J. Sussmann","doi":"10.1109/CDC.1989.70367","DOIUrl":null,"url":null,"abstract":"It is shown that a cascade system consisting of a linearly controllable system and a nonlinearly asymptotically stable system is globally stabilizable by smooth dynamic state feedback if the linear subsystem is right-invertible and weakly minimum phase and the only linear variables entering the nonlinear subsystem are the output and the zero dynamics corresponding to this output. Both of these conditions are coordinate-free, and there is freedom of choice for the linear output variable. This result generalizes several earlier sufficient conditions for stabilizability. The weak minimum-phase condition for the linear subsystem cannot be relaxed unless a growth restriction is imposed on the nonlinear subsystem.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"301","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 301

Abstract

It is shown that a cascade system consisting of a linearly controllable system and a nonlinearly asymptotically stable system is globally stabilizable by smooth dynamic state feedback if the linear subsystem is right-invertible and weakly minimum phase and the only linear variables entering the nonlinear subsystem are the output and the zero dynamics corresponding to this output. Both of these conditions are coordinate-free, and there is freedom of choice for the linear output variable. This result generalizes several earlier sufficient conditions for stabilizability. The weak minimum-phase condition for the linear subsystem cannot be relaxed unless a growth restriction is imposed on the nonlinear subsystem.<>
部分线性复合系统的全局镇定
证明了当线性子系统是右可逆的弱最小相位,且进入非线性子系统的线性变量只有输出和与此输出对应的零动态时,由线性可控系统和非线性渐近稳定系统组成的级联系统是全局光滑动态反馈稳定的。这两个条件都是无坐标的,线性输出变量可以自由选择。这一结果推广了几个较早的稳定性充分条件。除非对非线性子系统施加生长限制,否则线性子系统的弱最小相位条件不能松弛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信