Inductive character learning and classification with genetic algorithms

A. McAulay, J. Oh
{"title":"Inductive character learning and classification with genetic algorithms","authors":"A. McAulay, J. Oh","doi":"10.1109/ICSYSE.1991.161153","DOIUrl":null,"url":null,"abstract":"Adaptive-image learning and discrimination techniques using classifier systems are presented. The genetic algorithm (GA) is used for a learning strategy in the system. The proposed system learns arbitrary image objects without any prior knowledge of given images and recognizes them. The system also makes up for some general weak points that are present in most learning systems including conventional classifier systems. That is, first, in a learning system, forgetting of knowledge usually occurs if the knowledge is not used for a long time period. The system still maximizes adaptability, but it prevents the system from forgetting useful rules by using the 'no-unlearn' mode. Second, to improve large-class image classification and learning, a multiple sublength concept has been introduced to genetic algorithms. Third, a triggered GA, which plays an important role in distinguishing two or more similar images by eliminating generalists, is developed.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Adaptive-image learning and discrimination techniques using classifier systems are presented. The genetic algorithm (GA) is used for a learning strategy in the system. The proposed system learns arbitrary image objects without any prior knowledge of given images and recognizes them. The system also makes up for some general weak points that are present in most learning systems including conventional classifier systems. That is, first, in a learning system, forgetting of knowledge usually occurs if the knowledge is not used for a long time period. The system still maximizes adaptability, but it prevents the system from forgetting useful rules by using the 'no-unlearn' mode. Second, to improve large-class image classification and learning, a multiple sublength concept has been introduced to genetic algorithms. Third, a triggered GA, which plays an important role in distinguishing two or more similar images by eliminating generalists, is developed.<>
基于遗传算法的归纳字符学习与分类
介绍了基于分类器系统的自适应图像学习和识别技术。该系统采用遗传算法作为学习策略。该系统在没有任何先验知识的情况下学习任意图像对象并对其进行识别。该系统还弥补了大多数学习系统(包括传统分类器系统)中存在的一些一般弱点。也就是说,首先,在一个学习系统中,如果长时间不使用知识,通常会发生知识遗忘。系统仍然最大化适应性,但它通过使用“no-unlearn”模式来防止系统忘记有用的规则。其次,为了改进大类图像的分类和学习,在遗传算法中引入了多亚长度的概念。第三,开发了一种触发遗传算法,该算法通过消除通才在区分两个或多个相似图像方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信