On Data Summarization for Machine Learning in Multi-organization Federations

Bongjun Ko, Shiqiang Wang, T. He, D. Conway-Jones
{"title":"On Data Summarization for Machine Learning in Multi-organization Federations","authors":"Bongjun Ko, Shiqiang Wang, T. He, D. Conway-Jones","doi":"10.1109/SMARTCOMP.2019.00030","DOIUrl":null,"url":null,"abstract":"Machine learning is a promising technology for many modern applications. To train an effective machine learning model, a large amount of data is required. However, data may be created in different organizations and sharing data across organizational boundaries is difficult due to privacy concerns and communication bandwidth limitations. Data summarization is a technique for reducing the amount of data that needs to be shared, while preserving characteristics in the data that are useful for training machine learning models. In this paper, we present an overview of data summarization techniques, which can be useful for machine learning across organizational boundaries. We also discuss some possible applications related to these data summarization techniques and challenges for future research.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Machine learning is a promising technology for many modern applications. To train an effective machine learning model, a large amount of data is required. However, data may be created in different organizations and sharing data across organizational boundaries is difficult due to privacy concerns and communication bandwidth limitations. Data summarization is a technique for reducing the amount of data that needs to be shared, while preserving characteristics in the data that are useful for training machine learning models. In this paper, we present an overview of data summarization techniques, which can be useful for machine learning across organizational boundaries. We also discuss some possible applications related to these data summarization techniques and challenges for future research.
多组织联盟中机器学习的数据汇总研究
机器学习在许多现代应用中是一项很有前途的技术。为了训练一个有效的机器学习模型,需要大量的数据。然而,数据可能是在不同的组织中创建的,由于隐私问题和通信带宽限制,跨组织边界共享数据是困难的。数据汇总是一种减少需要共享的数据量的技术,同时保留数据中对训练机器学习模型有用的特征。在本文中,我们概述了数据汇总技术,这对于跨组织边界的机器学习很有用。我们还讨论了与这些数据汇总技术相关的一些可能的应用以及未来研究的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信