{"title":"TBPA: TESLA-based privacy-preserving authentication scheme for vehicular ad hoc networks","authors":"Xincheng Li, Ya-li Liu, Xinchun Yin","doi":"10.1504/ijes.2020.10027527","DOIUrl":null,"url":null,"abstract":"Vehicular ad hoc networks (VANETs) aim to strengthen traffic safety and improve traffic efficiency through wireless communication among vehicles and fixed infrastructures. However, to protect the communication from different potential attacks, identity and message authentication is a necessary solution to guarantee security. In this paper, an efficient privacy preserving authentication scheme based on TESLA called TBPA is proposed. Bilinear mapping is adopted to produce pseudonyms offline and realise anonymity. Besides, TBPA extends TESLA protocol and generates mapping values with time-related messages to achieve timely verification, which increases the efficiency of the scheme. Performance analysis shows that our scheme possesses excellent security and privacy properties and can resist different malicious attacks.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10027527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicular ad hoc networks (VANETs) aim to strengthen traffic safety and improve traffic efficiency through wireless communication among vehicles and fixed infrastructures. However, to protect the communication from different potential attacks, identity and message authentication is a necessary solution to guarantee security. In this paper, an efficient privacy preserving authentication scheme based on TESLA called TBPA is proposed. Bilinear mapping is adopted to produce pseudonyms offline and realise anonymity. Besides, TBPA extends TESLA protocol and generates mapping values with time-related messages to achieve timely verification, which increases the efficiency of the scheme. Performance analysis shows that our scheme possesses excellent security and privacy properties and can resist different malicious attacks.