Extracting semantic metadata for effective spreadsheet search

S. Chatvichienchai
{"title":"Extracting semantic metadata for effective spreadsheet search","authors":"S. Chatvichienchai","doi":"10.1109/ICSEC.2013.6694747","DOIUrl":null,"url":null,"abstract":"Metadata is an essential part of modern information system since it helps people to find relevant documents from disparate repositories. This paper describes my effort to develop a system that automatically generates semantic metadata from large, diverse, and evolving spreadsheet collections. Semantic metadata is known as metadata that describes contextually relevant or domain-specific information about content based on an industry-specific or enterprise-specific custom metadata model. In order to simplify semantic metadata generation problem, spreadsheet collections are categorized by layout similarity. A set of properties and semantic metadata extraction rules of a categorized spreadsheet collection is defined from a sample spreadsheet selected from the spreadsheet collection. Category of a given spreadsheet is justified by checking its properties with the property sets of registered collections. Semantic metadata generation of the given spreadsheet is based on semantic metadata extraction rules of the category to which the spreadsheet belongs. The hierarchical structure of semantic metadata of this paper enables end-users to define the meanings of search keywords. This capability allows end users to search the relevant spreadsheets efficiently.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metadata is an essential part of modern information system since it helps people to find relevant documents from disparate repositories. This paper describes my effort to develop a system that automatically generates semantic metadata from large, diverse, and evolving spreadsheet collections. Semantic metadata is known as metadata that describes contextually relevant or domain-specific information about content based on an industry-specific or enterprise-specific custom metadata model. In order to simplify semantic metadata generation problem, spreadsheet collections are categorized by layout similarity. A set of properties and semantic metadata extraction rules of a categorized spreadsheet collection is defined from a sample spreadsheet selected from the spreadsheet collection. Category of a given spreadsheet is justified by checking its properties with the property sets of registered collections. Semantic metadata generation of the given spreadsheet is based on semantic metadata extraction rules of the category to which the spreadsheet belongs. The hierarchical structure of semantic metadata of this paper enables end-users to define the meanings of search keywords. This capability allows end users to search the relevant spreadsheets efficiently.
为有效的电子表格搜索提取语义元数据
元数据是现代信息系统的重要组成部分,它帮助人们从不同的存储库中找到相关的文档。本文描述了我为开发一个系统所做的努力,该系统可以从大型、多样化和不断发展的电子表格集合中自动生成语义元数据。语义元数据被称为元数据,它基于特定于行业或特定于企业的自定义元数据模型描述与内容相关的上下文或特定于领域的信息。为了简化语义元数据的生成问题,根据布局相似度对电子表格集合进行分类。从从电子表格集合中选择的示例电子表格中定义分类电子表格集合的一组属性和语义元数据提取规则。通过使用已注册集合的属性集检查其属性来确定给定电子表格的类别。给定电子表格的语义元数据生成基于电子表格所属类别的语义元数据提取规则。本文的语义元数据的层次结构使最终用户能够定义搜索关键字的含义。此功能允许最终用户有效地搜索相关电子表格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信