Deep Learning with OBH for Real-Time Rotation-Invariant Signs Detection

S. Akhter, Shah Jafor Sadeek Quaderi, Saleh Ud-Din Ahmed
{"title":"Deep Learning with OBH for Real-Time Rotation-Invariant Signs Detection","authors":"S. Akhter, Shah Jafor Sadeek Quaderi, Saleh Ud-Din Ahmed","doi":"10.1145/3587828.3587884","DOIUrl":null,"url":null,"abstract":"Numerous studies are being undertaken to provide answers for sign language recognition and classification. Deep learning-based models have higher accuracy (90%-98%); however, require more runtime memory and processing in terms of both computational power and execution time (1 hour 20 minutes) for feature extraction and training images. Besides, deep learning models are not entirely insensitive to translation, rotation, and scaling; unless the training data includes rotated, translated, or scaled signs. However, Orientation-Based Hashcode (OBH) completes gesture recognition in a significantly shorter length of time (5 minutes) and with reasonable accuracy (80%-85%). In addition, OBH is not affected by translation, rotation, scaling, or occlusion. As a result, a new intermediary model is developed to detect sign language and perform classification with a reasonable processing time (6 minutes) like OBH while providing attractive accuracy (90%-96%) and invariance qualities. This paper presents a coupled and completely networked autonomous system comprised of OBH and Gabor features with machine learning models. The proposed model is evaluated with 576 sign alphabet images (RGB and Depth) from 24 distinct categories, and the results are compared to those obtained using traditional machine learning methodologies. The proposed methodology is 95.8% accurate against a randomly selected test dataset and 93.85% accurate after 9-fold validation.","PeriodicalId":340917,"journal":{"name":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587828.3587884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies are being undertaken to provide answers for sign language recognition and classification. Deep learning-based models have higher accuracy (90%-98%); however, require more runtime memory and processing in terms of both computational power and execution time (1 hour 20 minutes) for feature extraction and training images. Besides, deep learning models are not entirely insensitive to translation, rotation, and scaling; unless the training data includes rotated, translated, or scaled signs. However, Orientation-Based Hashcode (OBH) completes gesture recognition in a significantly shorter length of time (5 minutes) and with reasonable accuracy (80%-85%). In addition, OBH is not affected by translation, rotation, scaling, or occlusion. As a result, a new intermediary model is developed to detect sign language and perform classification with a reasonable processing time (6 minutes) like OBH while providing attractive accuracy (90%-96%) and invariance qualities. This paper presents a coupled and completely networked autonomous system comprised of OBH and Gabor features with machine learning models. The proposed model is evaluated with 576 sign alphabet images (RGB and Depth) from 24 distinct categories, and the results are compared to those obtained using traditional machine learning methodologies. The proposed methodology is 95.8% accurate against a randomly selected test dataset and 93.85% accurate after 9-fold validation.
基于OBH的深度学习实时旋转不变符号检测
目前正在进行大量研究,为手语识别和分类提供答案。基于深度学习的模型具有更高的准确率(90%-98%);然而,在计算能力和执行时间(1小时20分钟)方面,特征提取和训练图像需要更多的运行时内存和处理。此外,深度学习模型并非对平移、旋转和缩放完全不敏感;除非训练数据包含旋转、平移或缩放的符号。然而,基于方向的哈希码(OBH)在更短的时间(5分钟)内完成手势识别,并且具有合理的准确率(80%-85%)。此外,OBH不受平移、旋转、缩放或遮挡的影响。因此,开发了一种新的中介模型,在提供具有吸引力的准确率(90%-96%)和不变性质量的同时,以像OBH一样合理的处理时间(6分钟)检测手语并进行分类。本文提出了一个由OBH和Gabor特征组成的具有机器学习模型的耦合完全网络化自治系统。该模型使用来自24个不同类别的576张符号字母图像(RGB和Depth)进行评估,并将结果与使用传统机器学习方法获得的结果进行比较。该方法对随机选择的测试数据集的准确率为95.8%,经过9倍验证的准确率为93.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信