Applying Logistic Regression with Elastic Net and PCA to Determine the Objects Location in EIT

K. Król, T. Rymarczyk, E. Kozłowski, K. Niderla
{"title":"Applying Logistic Regression with Elastic Net and PCA to Determine the Objects Location in EIT","authors":"K. Król, T. Rymarczyk, E. Kozłowski, K. Niderla","doi":"10.1109/IIPhDW54739.2023.10124419","DOIUrl":null,"url":null,"abstract":"The article presents the application of logistic regression with Principal Components Analysis (PCA) and elastic net to find the localisation location in Electrical Impedance Tomography (EIT). The team's main focus was the use of machine learning algorithms in electrical tomography for object detection in a tank. Tomographic methods represent a dimensional image of the inside of the space rather than the individual points of the section under study. The study showed that the choice of the logistic regression method significantly affects the accuracy of the obtained results. For research purposes, specially designed numerical models were used.","PeriodicalId":396821,"journal":{"name":"2023 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPhDW54739.2023.10124419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents the application of logistic regression with Principal Components Analysis (PCA) and elastic net to find the localisation location in Electrical Impedance Tomography (EIT). The team's main focus was the use of machine learning algorithms in electrical tomography for object detection in a tank. Tomographic methods represent a dimensional image of the inside of the space rather than the individual points of the section under study. The study showed that the choice of the logistic regression method significantly affects the accuracy of the obtained results. For research purposes, specially designed numerical models were used.
应用弹性网逻辑回归和主成分分析确定EIT中目标的位置
本文将逻辑回归与主成分分析(PCA)和弹性网络相结合的方法应用于电阻抗断层扫描(EIT)中的定位定位。该团队的主要重点是在电子断层扫描中使用机器学习算法来检测坦克中的物体。层析成像方法表示空间内部的一维图像,而不是所研究的剖面的单个点。研究表明,逻辑回归方法的选择显著影响所得结果的准确性。为了研究目的,使用了专门设计的数值模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信