Minimax Lower Bound of k-Monotone Estimation in the Sup-norm

Teresa M. Lebair, Jinglai Shen
{"title":"Minimax Lower Bound of k-Monotone Estimation in the Sup-norm","authors":"Teresa M. Lebair, Jinglai Shen","doi":"10.1109/CISS.2019.8692914","DOIUrl":null,"url":null,"abstract":"Belonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Belonging to the framework of shape constrained estimation, k-monotone estimation refers to the nonparametric estimation of univariate k-monotone functions, e.g., monotone and convex unctions. This paper develops minimax lower bounds for k-monotone regression problems under the sup-norm for general k by constructing a family of k-monotone piecewise polynomial functions (or hypotheses) belonging to suitable Hölder and Sobolev classes. After establishing that these hypotheses satisfy several properties, we employ results from general min-imax lower bound theory to obtain the desired k-monotone regression minimax lower bound. Implications and extensions are also discussed.
上范数下k-单调估计的极大极小下界
k单调估计属于形状约束估计的框架,是指单变量k单调函数(如单调函数和凸函数)的非参数估计。本文通过构造属于合适的Hölder和Sobolev类的k-单调分段多项式函数(或假设)族,给出了一般k的上范数下k-单调回归问题的极大极小下界。在证明这些假设满足若干性质后,我们利用一般最小-最大下界理论的结果得到了期望的k-单调回归最小-最大下界。还讨论了其含义和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信