Intrusion Detection System using Aggregation of Machine Learning Algorithms

K. Arivarasan, M. Obaidat
{"title":"Intrusion Detection System using Aggregation of Machine Learning Algorithms","authors":"K. Arivarasan, M. Obaidat","doi":"10.1109/cits55221.2022.9832982","DOIUrl":null,"url":null,"abstract":"With the advancement of internet technologies comes the need for systems that can ensure the security of a network. An intrusion Detection System (IDS) can detect and sometimes take action against malicious network traffic. There are different types of IDS. For example, based on the detection method, it can be Signature-based IDS or Anomaly-based IDS or Hybrid IDS. In this work, multiple models are trained using various machine learning algorithms on the NSL-KDD dataset to build an efficient anomaly-based IDS that can detect malicious traffic with utmost accuracy. Supervised Learning algorithms like Logistic Regression, Decision Tree, K-Nearest Neighbour (KNN), XGBoost, Random Forest and Multilayer Perceptron (MLP) are used. At last, the Hard Voting technique is employed to increase efficiency.","PeriodicalId":136239,"journal":{"name":"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cits55221.2022.9832982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of internet technologies comes the need for systems that can ensure the security of a network. An intrusion Detection System (IDS) can detect and sometimes take action against malicious network traffic. There are different types of IDS. For example, based on the detection method, it can be Signature-based IDS or Anomaly-based IDS or Hybrid IDS. In this work, multiple models are trained using various machine learning algorithms on the NSL-KDD dataset to build an efficient anomaly-based IDS that can detect malicious traffic with utmost accuracy. Supervised Learning algorithms like Logistic Regression, Decision Tree, K-Nearest Neighbour (KNN), XGBoost, Random Forest and Multilayer Perceptron (MLP) are used. At last, the Hard Voting technique is employed to increase efficiency.
基于聚合机器学习算法的入侵检测系统
随着互联网技术的发展,人们对能够保证网络安全的系统产生了需求。入侵检测系统(IDS)可以检测并对恶意网络流量采取措施。IDS有不同的类型。根据检测方式的不同,可分为基于特征的检测、基于异常的检测、混合检测。在这项工作中,使用NSL-KDD数据集上的各种机器学习算法训练多个模型,以构建有效的基于异常的IDS,可以以最高的准确性检测恶意流量。监督学习算法,如逻辑回归,决策树,k近邻(KNN), XGBoost,随机森林和多层感知器(MLP)被使用。最后,采用硬投票技术来提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信