Asymptotic Post-Selection Inference for Akaike's Information Criterion

Ali Charkhi, G. Claeskens
{"title":"Asymptotic Post-Selection Inference for Akaike's Information Criterion","authors":"Ali Charkhi, G. Claeskens","doi":"10.2139/ssrn.3167253","DOIUrl":null,"url":null,"abstract":"Ignoring the model selection step in inference after selection is harmful. This paper studies the asymptotic distribution of estimators after model selection using the Akaike information criterion. First, we consider the classical setting in which a true model exists and is included in the candidate set of models. We exploit the overselection property of this criterion in the construction of a selection region, and obtain the asymptotic distribution of estimators and linear combinations thereof conditional on the selected model. The limiting distribution depends on the set of competitive models and on the smallest overparameterized model. Second, we relax the assumption about the existence of a true model, and obtain uniform asymptotic results. We use simulation to study the resulting postselection distributions and to calculate confidence regions for the model parameters. We apply the method to data.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3167253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ignoring the model selection step in inference after selection is harmful. This paper studies the asymptotic distribution of estimators after model selection using the Akaike information criterion. First, we consider the classical setting in which a true model exists and is included in the candidate set of models. We exploit the overselection property of this criterion in the construction of a selection region, and obtain the asymptotic distribution of estimators and linear combinations thereof conditional on the selected model. The limiting distribution depends on the set of competitive models and on the smallest overparameterized model. Second, we relax the assumption about the existence of a true model, and obtain uniform asymptotic results. We use simulation to study the resulting postselection distributions and to calculate confidence regions for the model parameters. We apply the method to data.
Akaike信息准则的渐近后选择推理
在选择后的推理中忽略模型选择步骤是有害的。本文利用Akaike信息准则研究了模型选择后估计量的渐近分布。首先,我们考虑一个真实模型存在并包含在候选模型集中的经典设置。我们在选择区域的构造中利用了该准则的过选择性质,得到了所选模型条件下估计量及其线性组合的渐近分布。极限分布取决于竞争模型集和最小的过参数化模型。其次,我们放宽了真模型存在的假设,得到了一致的渐近结果。我们使用模拟来研究结果的后选择分布,并计算模型参数的置信区域。我们将这种方法应用于数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信