Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network

Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo
{"title":"Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network","authors":"Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo","doi":"10.1109/AICAS.2019.8771614","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.
Flyintel——一个基于大脑激发脉冲神经网络的机器人导航平台
脉冲神经网络(SNN)被许多人认为是“第三代网络”,它将以一种更现实的生物学方式解决计算问题。在我们的项目中,我们设计了一个由用户自定义SNN控制的机器人平台,以开发具有高灵活性的下一代人工智能机器人。本文介绍了该项目的初步进展情况。我们首先实现了一个基本的简单决策网络,机器人能够执行基本但重要的觅食和风险规避任务。接下来,我们实现果蝇中心复合体的神经网络,以赋予机器人空间方向记忆,这是空间导航能力的关键功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信