Supporting Data-Driven Workflows Enabled by Large Scale Observatories

A. Zamani, Moustafa AbdelBaky, Daniel Balouek-Thomert, I. Rodero, M. Parashar
{"title":"Supporting Data-Driven Workflows Enabled by Large Scale Observatories","authors":"A. Zamani, Moustafa AbdelBaky, Daniel Balouek-Thomert, I. Rodero, M. Parashar","doi":"10.1109/eScience.2017.95","DOIUrl":null,"url":null,"abstract":"Large scale observatories are shared-use resources that provide open access to data from geographically distributed sensors and instruments. This data has the potential to accelerate scientific discovery. However, seamlessly integrating the data into scientific workflows remains a challenge. In this paper, we summarize our ongoing work in supporting data-driven and data-intensive workflows and outline our vision for how these observatories can improve large-scale science. Specifically, we present programming abstractions and runtime management services to enable the automatic integration of data in scientific workflows. Further, we show how approximation techniques can be used to address network and processing variations by studying constraint limitations and their associated latencies. We use the Ocean Observatories Initiative (OOI) as a driving use case for this work.","PeriodicalId":137652,"journal":{"name":"2017 IEEE 13th International Conference on e-Science (e-Science)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2017.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Large scale observatories are shared-use resources that provide open access to data from geographically distributed sensors and instruments. This data has the potential to accelerate scientific discovery. However, seamlessly integrating the data into scientific workflows remains a challenge. In this paper, we summarize our ongoing work in supporting data-driven and data-intensive workflows and outline our vision for how these observatories can improve large-scale science. Specifically, we present programming abstractions and runtime management services to enable the automatic integration of data in scientific workflows. Further, we show how approximation techniques can be used to address network and processing variations by studying constraint limitations and their associated latencies. We use the Ocean Observatories Initiative (OOI) as a driving use case for this work.
支持大规模天文台启用的数据驱动工作流
大型天文台是共享资源,提供对地理分布的传感器和仪器数据的开放访问。这些数据有可能加速科学发现。然而,将数据无缝集成到科学工作流程中仍然是一个挑战。在本文中,我们总结了我们在支持数据驱动和数据密集型工作流程方面正在进行的工作,并概述了我们对这些天文台如何改善大规模科学的愿景。具体来说,我们提出了编程抽象和运行时管理服务,以实现科学工作流中数据的自动集成。此外,我们还展示了如何通过研究约束限制及其相关延迟来使用近似技术来解决网络和处理变化。我们使用海洋观测站倡议(OOI)作为这项工作的驱动用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信