Hierarchical Clustering for On-Chip Networks

R. Hesse, Natalie D. Enright Jerger
{"title":"Hierarchical Clustering for On-Chip Networks","authors":"R. Hesse, Natalie D. Enright Jerger","doi":"10.1145/2857058.2857064","DOIUrl":null,"url":null,"abstract":"Hierarchy and communication locality are a must for many-core systems. As systems scale to dozens or hundreds of cores, we simply cannot afford the power consumption and latency of random communication that spans the entire chip. Existing hierarchical Networks-on-Chip (NoCs) support communication locality only for a fixed cluster of nodes; providing a fixed hierarchy is too restrictive in terms of parallelism and data placement. Therefore, we propose a new, more flexible class of hierarchical NoCs: Elastic Hierarchical NoCs. Elastic Hierarchical NoCs dynamically adjust the number and size of clusters during runtime according to the system's communication demands. The interconnect can adapt to changes in communication locality across different application phases, between applications and in the presence of server consolidation. Our design improves overall system performance by up to 46% and 13% on average over a conventional 2D mesh and by up to 16% and 6% on average over an existing hierarchical NoC implementation. Power consumption is reduced by 45% and 7% respectively on average.","PeriodicalId":292715,"journal":{"name":"AISTECS '16","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AISTECS '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2857058.2857064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchy and communication locality are a must for many-core systems. As systems scale to dozens or hundreds of cores, we simply cannot afford the power consumption and latency of random communication that spans the entire chip. Existing hierarchical Networks-on-Chip (NoCs) support communication locality only for a fixed cluster of nodes; providing a fixed hierarchy is too restrictive in terms of parallelism and data placement. Therefore, we propose a new, more flexible class of hierarchical NoCs: Elastic Hierarchical NoCs. Elastic Hierarchical NoCs dynamically adjust the number and size of clusters during runtime according to the system's communication demands. The interconnect can adapt to changes in communication locality across different application phases, between applications and in the presence of server consolidation. Our design improves overall system performance by up to 46% and 13% on average over a conventional 2D mesh and by up to 16% and 6% on average over an existing hierarchical NoC implementation. Power consumption is reduced by 45% and 7% respectively on average.
片上网络的分层聚类
层次结构和通信局部性是多核心系统必须具备的。随着系统扩展到数十或数百个核心,我们根本无法承受跨越整个芯片的随机通信的功耗和延迟。现有的分层片上网络(noc)仅支持固定节点集群的通信局部性;在并行性和数据放置方面,提供固定层次结构的限制太大。因此,我们提出了一种新的、更灵活的分层noc:弹性分层noc。弹性分层noc在运行时根据系统的通信需求动态调整集群的数量和大小。互连可以适应跨不同应用程序阶段、应用程序之间以及存在服务器整合时通信局部性的变化。我们的设计比传统的2D网格平均提高了46%和13%的整体系统性能,比现有的分层NoC实现平均提高了16%和6%。能耗平均分别降低45%和7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信