DSC: Deep Scan Context Descriptor for Large-Scale Place Recognition

Jiafeng Cui, Teng Huang, Yingfeng Cai, Junqiao Zhao, Lu Xiong, Zhuoping Yu
{"title":"DSC: Deep Scan Context Descriptor for Large-Scale Place Recognition","authors":"Jiafeng Cui, Teng Huang, Yingfeng Cai, Junqiao Zhao, Lu Xiong, Zhuoping Yu","doi":"10.1109/MFI55806.2022.9913850","DOIUrl":null,"url":null,"abstract":"LiDAR-based place recognition is an essential and challenging task both in loop closure detection and global relocalization. We propose Deep Scan Context (DSC), a general and discriminative global descriptor that captures the relationship among segments of a point cloud. Unlike previous methods that utilize either semantics or a sequence of adjacent point clouds for better place recognition, we only use the raw point clouds to get competitive results. Concretely, we first segment the point cloud egocentrically to divide the point cloud into several segments and extract the features of the segments from both spatial distribution and shape differences. Then, we introduce a graph neural network to aggregate these features into an embedding representation. Extensive experiments conducted on the KITTI dataset show that DSC is robust to scene variants and outperforms existing methods.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

LiDAR-based place recognition is an essential and challenging task both in loop closure detection and global relocalization. We propose Deep Scan Context (DSC), a general and discriminative global descriptor that captures the relationship among segments of a point cloud. Unlike previous methods that utilize either semantics or a sequence of adjacent point clouds for better place recognition, we only use the raw point clouds to get competitive results. Concretely, we first segment the point cloud egocentrically to divide the point cloud into several segments and extract the features of the segments from both spatial distribution and shape differences. Then, we introduce a graph neural network to aggregate these features into an embedding representation. Extensive experiments conducted on the KITTI dataset show that DSC is robust to scene variants and outperforms existing methods.
用于大规模位置识别的深度扫描上下文描述符
基于激光雷达的位置识别在环闭合检测和全局再定位中都是一项重要而富有挑战性的任务。我们提出了深度扫描上下文(DSC),这是一种通用的判别性全局描述符,用于捕获点云各部分之间的关系。与之前利用语义或相邻点云序列来更好地识别位置的方法不同,我们只使用原始点云来获得竞争结果。具体来说,我们首先以自我为中心对点云进行分割,将点云分割成若干段,并从空间分布和形状差异两方面提取各段的特征。然后,我们引入一个图神经网络将这些特征聚合到一个嵌入表示中。在KITTI数据集上进行的大量实验表明,DSC对场景变量具有鲁棒性,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信