Advances in constrained clustering

Zijie Qi, Yinghui (Catherine) Yang
{"title":"Advances in constrained clustering","authors":"Zijie Qi, Yinghui (Catherine) Yang","doi":"10.1109/ICDEW.2010.5452728","DOIUrl":null,"url":null,"abstract":"Constrained clustering (semi-supervised learning) techniques have attracted more attention in recent years. However, the commonly used constraints are restricted to the instance level, thus we introduced two new classifications for the type of constraints: decision constraints and non-decision constraints. We implemented applications involving non-decision constraints to find alternative clusterings. Due to the fact that randomly generated constraints might adversely impact the performance, we discussed the main reasons for carefully generating a subset of useful constraints, and defined two basic questions on how to generate useful constraints.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constrained clustering (semi-supervised learning) techniques have attracted more attention in recent years. However, the commonly used constraints are restricted to the instance level, thus we introduced two new classifications for the type of constraints: decision constraints and non-decision constraints. We implemented applications involving non-decision constraints to find alternative clusterings. Due to the fact that randomly generated constraints might adversely impact the performance, we discussed the main reasons for carefully generating a subset of useful constraints, and defined two basic questions on how to generate useful constraints.
约束聚类研究进展
约束聚类(半监督学习)技术近年来受到越来越多的关注。然而,常用的约束仅限于实例级别,因此我们为约束类型引入了两种新的分类:决策约束和非决策约束。我们实现了涉及非决策约束的应用程序,以查找备选聚类。由于随机生成的约束可能会对性能产生不利影响,因此我们讨论了仔细生成有用约束子集的主要原因,并定义了关于如何生成有用约束的两个基本问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信