Deriving implicit user feedback from partial URLs for effective web page retrieval

Rongmei Li, T. V. D. Weide
{"title":"Deriving implicit user feedback from partial URLs for effective web page retrieval","authors":"Rongmei Li, T. V. D. Weide","doi":"10.5555/1937055.1937083","DOIUrl":null,"url":null,"abstract":"User click-throughs provide a search context for understanding the user need of complex information. This paper re-examines the effectiveness of this approach when based on partial clicked data using the language modeling framework. We expand the original query by topical terms derived from clicked Web pages and enhance early precision via a more compact document representation. Since our URLs of Web pages are stripped, we first reconstruct them at different levels based on different collections. Our experimental results on the GOV2 test collection and AOL query log show improvement by 31.7% and 28.3% significantly in statMAP for two sources of reconstruction and 153 ad-hoc queries. Our model also outperforms pseudo relevance feedback.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

User click-throughs provide a search context for understanding the user need of complex information. This paper re-examines the effectiveness of this approach when based on partial clicked data using the language modeling framework. We expand the original query by topical terms derived from clicked Web pages and enhance early precision via a more compact document representation. Since our URLs of Web pages are stripped, we first reconstruct them at different levels based on different collections. Our experimental results on the GOV2 test collection and AOL query log show improvement by 31.7% and 28.3% significantly in statMAP for two sources of reconstruction and 153 ad-hoc queries. Our model also outperforms pseudo relevance feedback.
从部分url获取隐式用户反馈,实现有效的网页检索
用户点击为理解用户对复杂信息的需求提供了一个搜索上下文。本文使用语言建模框架重新检验了该方法在基于部分点击数据的情况下的有效性。我们通过从被点击的Web页面派生的主题术语扩展原始查询,并通过更紧凑的文档表示提高早期精度。由于我们的Web页面的url被剥离了,我们首先基于不同的集合在不同的级别重构它们。我们在GOV2测试集和AOL查询日志上的实验结果表明,对于两个重构源和153个临时查询,statMAP显著提高了31.7%和28.3%。我们的模型也优于伪相关反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信