H. Bridge, A. Lazarus, K. Ogilvie, J. Scudder, R. Hartle, J. Asbridge, S. Bame, W. Feldman, G. Siscoe, C. Yeates, M. Rycroft
{"title":"Preliminary Report of Results from the Plasma Science Experiment on Mariner 10","authors":"H. Bridge, A. Lazarus, K. Ogilvie, J. Scudder, R. Hartle, J. Asbridge, S. Bame, W. Feldman, G. Siscoe, C. Yeates, M. Rycroft","doi":"10.1515/9783112482124-069","DOIUrl":null,"url":null,"abstract":"Preliminary measurements of electron number density and temperature near Venus and Mercury and some results on flow speeds are presented. It is concluded that the interaction of the solar wind with Venus probably results in a bow shock characterized by H/r = 0.01 (ratio of the ionospheric scale height to the planetocentric distance of the nose of the ionopause); an extended exosphere appears unlikely. This direct interaction is indicated by the behavior of electrons with energies of 100-500 eV. Some unusual downstream effects suggest a comet-like tail several hundred scale lengths long. Near Mercury, a fully developed bow shock and magnetosheath were observed. Inside the magnetosheath there is a region analogous to the magnetosphere of the earth and populated by electrons of lower density and temperature than those found in the solar wind. The solar wind ram pressure corresponds to a stagnation pressure equivalent to a 170 gamma magnetic field. The strong solar wind interaction with Mercury is definitely magnetic, but not ionospheric or atmospheric. Spectra and particle flux varied widely while the spaceship was within the magnetosphere itself; temporal events like substorms may be responsible.","PeriodicalId":423960,"journal":{"name":"Sāo Paulo, S.P., Brazil - June 1974","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sāo Paulo, S.P., Brazil - June 1974","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783112482124-069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Preliminary measurements of electron number density and temperature near Venus and Mercury and some results on flow speeds are presented. It is concluded that the interaction of the solar wind with Venus probably results in a bow shock characterized by H/r = 0.01 (ratio of the ionospheric scale height to the planetocentric distance of the nose of the ionopause); an extended exosphere appears unlikely. This direct interaction is indicated by the behavior of electrons with energies of 100-500 eV. Some unusual downstream effects suggest a comet-like tail several hundred scale lengths long. Near Mercury, a fully developed bow shock and magnetosheath were observed. Inside the magnetosheath there is a region analogous to the magnetosphere of the earth and populated by electrons of lower density and temperature than those found in the solar wind. The solar wind ram pressure corresponds to a stagnation pressure equivalent to a 170 gamma magnetic field. The strong solar wind interaction with Mercury is definitely magnetic, but not ionospheric or atmospheric. Spectra and particle flux varied widely while the spaceship was within the magnetosphere itself; temporal events like substorms may be responsible.