Amplitude normalization in blind modulation classification

Gaurav Jyoti Phukan, P. Bora, A. Rajesh, C. Ramesh
{"title":"Amplitude normalization in blind modulation classification","authors":"Gaurav Jyoti Phukan, P. Bora, A. Rajesh, C. Ramesh","doi":"10.1109/NCC.2012.6176788","DOIUrl":null,"url":null,"abstract":"The classification of digital modulation schemes plays an important role in communication intelligence (COMINT) and other related applications. The existing algorithms for modulation classification consider a semi-blind scenario, where certain signal parameters are assumed to be known. The pre-processing accuracy of signal parameters like the symbol rate, the center frequency, the carrier phase and the signal amplitude etc. has direct implication on classification. Here we address the case of model mismatch due to the amplitude uncertainty in maximum likelihood (ML) classification and propose a new approach to mitigate the situation. The method is based on the normalization of received signal amplitude using fuzzy clustering algorithm. Simulation results are presented to show the robustness of the algorithm for blind scenario. Concluding remarks are made with the scope for future work.","PeriodicalId":178278,"journal":{"name":"2012 National Conference on Communications (NCC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2012.6176788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The classification of digital modulation schemes plays an important role in communication intelligence (COMINT) and other related applications. The existing algorithms for modulation classification consider a semi-blind scenario, where certain signal parameters are assumed to be known. The pre-processing accuracy of signal parameters like the symbol rate, the center frequency, the carrier phase and the signal amplitude etc. has direct implication on classification. Here we address the case of model mismatch due to the amplitude uncertainty in maximum likelihood (ML) classification and propose a new approach to mitigate the situation. The method is based on the normalization of received signal amplitude using fuzzy clustering algorithm. Simulation results are presented to show the robustness of the algorithm for blind scenario. Concluding remarks are made with the scope for future work.
盲调制分类中的幅度归一化
数字调制方案的分类在通信智能(COMINT)和其他相关应用中起着重要作用。现有的调制分类算法考虑了半盲场景,其中某些信号参数假设是已知的。符号率、中心频率、载波相位、信号幅度等信号参数的预处理精度直接影响分类。本文针对最大似然(ML)分类中由于幅度不确定性导致的模型失配问题,提出了一种新的方法来缓解这种情况。该方法采用模糊聚类算法对接收信号幅度进行归一化处理。仿真结果表明了该算法在盲场景下的鲁棒性。最后,对今后工作的范围作了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信