Non-intrusive load monitoring based on switching voltage transients and wavelet transforms

C. Duarte, P. Delmar, K. Goossen, K. Barner, E. Gómez-Luna
{"title":"Non-intrusive load monitoring based on switching voltage transients and wavelet transforms","authors":"C. Duarte, P. Delmar, K. Goossen, K. Barner, E. Gómez-Luna","doi":"10.1109/FIIW.2012.6378333","DOIUrl":null,"url":null,"abstract":"Continuous Wavelet Transform (CWT) analysis to find feature vectors for switching voltage transients for Non-Intrusive Load Monitoring (NILM) is presented and discussed, and compared with the previously used short time Fourier transform (STFT). The feature vectors computed from both CWT and STFT were used to train Support Vector Machines (SVMs) that identify the connection or disconnection of appliances for a NILM system. Experimental results show that the CWT analysis based on the complex Morlet wavelet improves classification accuracy as compared to the analysis based on STFT. More importantly, a 20× reduction of the vector size requirement is shown, thus greatly lowering computational requirements. It can be expected that commercial transient-based NILM will be based upon the CWT methods shown here.","PeriodicalId":170653,"journal":{"name":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIIW.2012.6378333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Continuous Wavelet Transform (CWT) analysis to find feature vectors for switching voltage transients for Non-Intrusive Load Monitoring (NILM) is presented and discussed, and compared with the previously used short time Fourier transform (STFT). The feature vectors computed from both CWT and STFT were used to train Support Vector Machines (SVMs) that identify the connection or disconnection of appliances for a NILM system. Experimental results show that the CWT analysis based on the complex Morlet wavelet improves classification accuracy as compared to the analysis based on STFT. More importantly, a 20× reduction of the vector size requirement is shown, thus greatly lowering computational requirements. It can be expected that commercial transient-based NILM will be based upon the CWT methods shown here.
基于开关电压瞬态和小波变换的非侵入式负荷监测
提出并讨论了连续小波变换(CWT)分析方法在非侵入式负荷监测(NILM)中寻找开关电压瞬态特征向量的方法,并与之前使用的短时傅立叶变换(STFT)进行了比较。从CWT和STFT计算的特征向量用于训练支持向量机(svm),以识别NILM系统中设备的连接或断开。实验结果表明,基于复Morlet小波的CWT分析比基于STFT的分析提高了分类精度。更重要的是,矢量大小要求减少了20倍,从而大大降低了计算需求。可以预期,商业的基于瞬态的NILM将基于这里所示的CWT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信