Distributed Formation Control of Multiple Flight Vehicles with Considering Communication Delay

Li Wei, Wen Qiuqiu, Jiang Huan, Xia Qunli
{"title":"Distributed Formation Control of Multiple Flight Vehicles with Considering Communication Delay","authors":"Li Wei, Wen Qiuqiu, Jiang Huan, Xia Qunli","doi":"10.1109/ICMAE52228.2021.9522381","DOIUrl":null,"url":null,"abstract":"The distributed formation control of multiple flight vehicles is researched based on the reentry scenario in this paper. The leader information and neighboring follower information are transmitted to each follower in the formation system, and then the weighted adjacency matrix is chosen and the distributed sliding mode control algorithm in the line-of-sight (LOS) is designed for the accurately linearized double-integrator system to suppress the adverse effects of the communication delay and the external disturbance. The finite-time convergence of the formation tracking errors is rigorously proved. The expected position vector of each follower is given and numerical simulations are conducted subsequently to verify the effectiveness of the proposed control algorithm. The presented results can be applied to deal with the consensus tracking problem for the cluster system with one leader.","PeriodicalId":161846,"journal":{"name":"2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE52228.2021.9522381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The distributed formation control of multiple flight vehicles is researched based on the reentry scenario in this paper. The leader information and neighboring follower information are transmitted to each follower in the formation system, and then the weighted adjacency matrix is chosen and the distributed sliding mode control algorithm in the line-of-sight (LOS) is designed for the accurately linearized double-integrator system to suppress the adverse effects of the communication delay and the external disturbance. The finite-time convergence of the formation tracking errors is rigorously proved. The expected position vector of each follower is given and numerical simulations are conducted subsequently to verify the effectiveness of the proposed control algorithm. The presented results can be applied to deal with the consensus tracking problem for the cluster system with one leader.
考虑通信延迟的多飞行器分布式编队控制
本文研究了基于再入场景的多飞行器分布式编队控制问题。将前导信息和相邻跟随者信息传递给编队系统中的每个跟随者,然后选择加权邻接矩阵,设计精确线性化双积分系统视距内的分布式滑模控制算法,以抑制通信延迟和外界干扰的不利影响。严格证明了编队跟踪误差的有限时间收敛性。给出了各从动件的期望位置向量,并进行了数值仿真,验证了所提控制算法的有效性。本文的研究结果可用于解决单领导者集群系统的共识跟踪问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信