Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements

Patrick Weber, A. Petzold, O. Bischof, B. Fischer, Marcel Berg, A. Freedman, T. Onasch, U. Bundke
{"title":"Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements","authors":"Patrick Weber, A. Petzold, O. Bischof, B. Fischer, Marcel Berg, A. Freedman, T. Onasch, U. Bundke","doi":"10.5194/amt-2021-284","DOIUrl":null,"url":null,"abstract":"Abstract. Aerosol intensive optical properties like the Ångström exponents for aerosol light extinction, scattering and absorption, or the single-scattering albedo are indicators for aerosol size distributions, chemical composition and radiative behaviour and contain also source information. The observation of these parameters requires the measurement of aerosol optical properties at multiple wavelengths which usually implies the use of several instruments. Our study aims to quantify the uncertainties of the determination of multiple-wavelengths intensive properties by an optical closure approach, using different test aerosols. In our laboratory study, we measured the full set of aerosol optical properties for a range of light-absorbing aerosols with different properties, mixed externally with ammonium sulphate to generate aerosols of controlled single-scattering albedo. The investigated aerosol types were: fresh combustion soot emitted by an inverted flame soot generator (SOOT, fractal aggregates), Aquadag (AQ, spherical shape), Cabot industrial soot (BC, compact clusters), and an acrylic paint (Magic Black, MB). One focus was on the validity of the Differential Method (DM: absorption = extinction minus scattering) for the determination of Ångström exponents for different particle loads and mixtures of light-absorbing aerosol with ammonium sulphate, in comparison to data obtained from single instruments. The instruments used in this study were two CAPS PMssa (Cavity Attenuated Phase Shift Single Scattering Albedo, λ = 450, 630 nm) for light extinction and scattering coefficients, one Integrating Nephelometer (λ = 450, 550, 700 nm) for light scattering coefficient and one Tricolour Absorption Photometer (TAP, λ = 467, 528, 652 nm) for filter-based light absorption coefficient measurement. Our key finding is that the coefficients of light absorption σap, scattering σsp and extinction σep from the Differential Method agree with data from single reference instruments, and the slopes of regression lines equal unity within the precision error. We found, however, that the precision error for the DM suppresses 100 % for σap values lower than 10–20 Mm−1 for atmospheric relevant single scattering albedo. This increasing uncertainty with decreasing σap yields an absorption Ångström exponent (AAE) that is too uncertain for measurements in the range of atmospheric aerosol loadings. We recommend using DM only for measuring AAE values for σap > 50 Mm−1. Ångström exponents for scattering and extinction are reliable for extinction coefficients from 20 up to 1000 Mm−1 and stay within 10 % deviation from reference instruments, regardless of the chosen method. Single-scattering albedo (SSA) values for 450 nm and 630 nm wavelengths agree with values from the reference method σsp (NEPH)/σep (CAPS PMSSA) with less than 10 % uncertainty for all instrument combinations and sampled aerosol types which fulfil the proposed goal for measurement uncertainty of 10 % proposed by Laj et al., 2020 for GCOS (Global Climate Observing System) applications.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/amt-2021-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Aerosol intensive optical properties like the Ångström exponents for aerosol light extinction, scattering and absorption, or the single-scattering albedo are indicators for aerosol size distributions, chemical composition and radiative behaviour and contain also source information. The observation of these parameters requires the measurement of aerosol optical properties at multiple wavelengths which usually implies the use of several instruments. Our study aims to quantify the uncertainties of the determination of multiple-wavelengths intensive properties by an optical closure approach, using different test aerosols. In our laboratory study, we measured the full set of aerosol optical properties for a range of light-absorbing aerosols with different properties, mixed externally with ammonium sulphate to generate aerosols of controlled single-scattering albedo. The investigated aerosol types were: fresh combustion soot emitted by an inverted flame soot generator (SOOT, fractal aggregates), Aquadag (AQ, spherical shape), Cabot industrial soot (BC, compact clusters), and an acrylic paint (Magic Black, MB). One focus was on the validity of the Differential Method (DM: absorption = extinction minus scattering) for the determination of Ångström exponents for different particle loads and mixtures of light-absorbing aerosol with ammonium sulphate, in comparison to data obtained from single instruments. The instruments used in this study were two CAPS PMssa (Cavity Attenuated Phase Shift Single Scattering Albedo, λ = 450, 630 nm) for light extinction and scattering coefficients, one Integrating Nephelometer (λ = 450, 550, 700 nm) for light scattering coefficient and one Tricolour Absorption Photometer (TAP, λ = 467, 528, 652 nm) for filter-based light absorption coefficient measurement. Our key finding is that the coefficients of light absorption σap, scattering σsp and extinction σep from the Differential Method agree with data from single reference instruments, and the slopes of regression lines equal unity within the precision error. We found, however, that the precision error for the DM suppresses 100 % for σap values lower than 10–20 Mm−1 for atmospheric relevant single scattering albedo. This increasing uncertainty with decreasing σap yields an absorption Ångström exponent (AAE) that is too uncertain for measurements in the range of atmospheric aerosol loadings. We recommend using DM only for measuring AAE values for σap > 50 Mm−1. Ångström exponents for scattering and extinction are reliable for extinction coefficients from 20 up to 1000 Mm−1 and stay within 10 % deviation from reference instruments, regardless of the chosen method. Single-scattering albedo (SSA) values for 450 nm and 630 nm wavelengths agree with values from the reference method σsp (NEPH)/σep (CAPS PMSSA) with less than 10 % uncertainty for all instrument combinations and sampled aerosol types which fulfil the proposed goal for measurement uncertainty of 10 % proposed by Laj et al., 2020 for GCOS (Global Climate Observing System) applications.
利用CAPS_SSA、浊度计和TAP测量得到的多波长强气溶胶光学特性的相对误差
摘要气溶胶密集光学特性,如Ångström气溶胶光消、散射和吸收指数,或单散射反照率,是气溶胶大小分布、化学成分和辐射行为的指标,也包含源信息。这些参数的观测需要测量多个波长的气溶胶光学特性,这通常意味着使用几种仪器。我们的研究旨在通过光学闭合方法,使用不同的测试气溶胶,量化测定多波长强度特性的不确定性。在我们的实验室研究中,我们测量了一系列具有不同性质的吸光气溶胶的一整套气溶胶光学特性,这些气溶胶与硫酸铵外部混合以产生受控单散射反照率的气溶胶。所研究的气溶胶类型有:倒立火焰烟尘发生器排放的新鲜燃烧烟尘(soot,分形聚集体)、Aquadag (AQ,球形)、Cabot工业烟尘(BC,致密簇)和丙烯酸涂料(Magic Black, MB)。其中一个重点是,与单一仪器获得的数据相比,差分法(DM:吸收=消光减去散射)在测定不同粒子负荷和吸光气溶胶与硫酸铵混合物的Ångström指数时的有效性。本研究使用两台CAPS PMssa(腔衰减相移单散射反照率,λ = 450, 630 nm)测量消光和散射系数,一台积分浊度计(λ = 450, 550, 700 nm)测量光散射系数,一台三色吸收光度计(TAP, λ = 467, 528, 652 nm)测量滤光片的光吸收系数。我们的主要发现是微分法的光吸收σap、散射σsp和消光σep系数与单参考仪器的数据一致,回归线的斜率在精度误差范围内相等。然而,我们发现,对于大气相关的单次散射反照率,σap值低于10-20 Mm−1时,DM的精度误差抑制100%。随着σap的减小,不确定性的增加产生了吸收Ångström指数(AAE),该指数对于大气气溶胶负荷范围内的测量来说太不确定了。建议仅测量σap > 50mm−1的AAE值时使用DM。Ångström散射和消光指数在消光系数从20到1000 Mm−1范围内是可靠的,并且与参考仪器的偏差保持在10%以内,无论选择哪种方法。450 nm和630 nm波长的单散射反照率(SSA)值与参考方法σsp (NEPH)/σep (CAPS PMSSA)的值一致,所有仪器组合和采样气溶胶类型的不确定度小于10%,满足Laj等人提出的2020年全球气候观测系统(GCOS)应用的测量不确定度10%的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信