Low-dimensional genotype embeddings for predictive models

Syed Fahad Sultan, Xingzhi Guo, S. Skiena
{"title":"Low-dimensional genotype embeddings for predictive models","authors":"Syed Fahad Sultan, Xingzhi Guo, S. Skiena","doi":"10.1145/3535508.3545507","DOIUrl":null,"url":null,"abstract":"We develop methods for constructing low-dimensional vector representations (embeddings) of large-scale genotyping data, capable of reducing genotypes of hundreds of thousands of SNPs to 100-dimensional embeddings that retain substantial predictive power for inferring medical phenotypes. We demonstrate that embedding-based models yield an average F-score of 0.605 on a test of ten phenoypes (including BMI prediction, genetic relatedness, and depression) versus 0.339 for baseline models. Genotype embeddings also hold promise for creating sharing data while preserving subject anonymity: we show that they retain substantial predictive power even after anonymization by adding Gaussian noise to each dimension.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop methods for constructing low-dimensional vector representations (embeddings) of large-scale genotyping data, capable of reducing genotypes of hundreds of thousands of SNPs to 100-dimensional embeddings that retain substantial predictive power for inferring medical phenotypes. We demonstrate that embedding-based models yield an average F-score of 0.605 on a test of ten phenoypes (including BMI prediction, genetic relatedness, and depression) versus 0.339 for baseline models. Genotype embeddings also hold promise for creating sharing data while preserving subject anonymity: we show that they retain substantial predictive power even after anonymization by adding Gaussian noise to each dimension.
预测模型的低维基因型嵌入
我们开发了构建大规模基因分型数据的低维载体表示(嵌入)的方法,能够将数十万个snp的基因型减少到100维嵌入,这些嵌入保留了推断医学表型的实质性预测能力。我们证明,基于嵌入的模型在10种表型(包括BMI预测、遗传相关性和抑郁)的测试中产生的平均f分为0.605,而基线模型的平均f分为0.339。基因型嵌入也有望在保持受试者匿名性的同时创建共享数据:我们表明,即使在匿名化之后,通过向每个维度添加高斯噪声,它们仍保留了大量的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信