Knowledge Sources for Word Sense Disambiguation of Biomedical Text

Mark Stevenson, Yikun Guo, R. Gaizauskas, David Martínez
{"title":"Knowledge Sources for Word Sense Disambiguation of Biomedical Text","authors":"Mark Stevenson, Yikun Guo, R. Gaizauskas, David Martínez","doi":"10.3115/1572306.1572321","DOIUrl":null,"url":null,"abstract":"Like text in other domains, biomedical documents contain a range of terms with more than one possible meaning. These ambiguities form a significant obstacle to the automatic processing of biomedical texts. Previous approaches to resolving this problem have made use of a variety of knowledge sources including linguistic information (from the context in which the ambiguous term is used) and domain-specific resources (such as UMLS). In this paper we compare a range of knowledge sources which have been previously used and introduce a novel one: MeSH terms. The best performance is obtained using linguistic features in combination with MeSH terms. Results from our system outperform published results for previously reported systems on a standard test set (the NLM-WSD corpus).","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Like text in other domains, biomedical documents contain a range of terms with more than one possible meaning. These ambiguities form a significant obstacle to the automatic processing of biomedical texts. Previous approaches to resolving this problem have made use of a variety of knowledge sources including linguistic information (from the context in which the ambiguous term is used) and domain-specific resources (such as UMLS). In this paper we compare a range of knowledge sources which have been previously used and introduce a novel one: MeSH terms. The best performance is obtained using linguistic features in combination with MeSH terms. Results from our system outperform published results for previously reported systems on a standard test set (the NLM-WSD corpus).
生物医学文本词义消歧的知识来源
与其他领域的文本一样,生物医学文档包含一系列具有多种可能含义的术语。这些歧义构成了生物医学文本自动处理的重大障碍。以前解决这个问题的方法利用了各种知识来源,包括语言信息(来自使用歧义术语的上下文中)和特定于领域的资源(例如UMLS)。在本文中,我们比较了一系列以前使用的知识来源,并引入了一种新的知识来源:MeSH术语。将语言特征与MeSH术语相结合,可以获得最佳的性能。我们系统的结果在标准测试集(NLM-WSD语料库)上优于先前报告的系统的公布结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信