Automatic relevance feedback for video retrieval

P. Muneesawang, L. Guan
{"title":"Automatic relevance feedback for video retrieval","authors":"P. Muneesawang, L. Guan","doi":"10.1109/ICME.2003.1221631","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic relevance feedback method for improving retrieval accuracy in video database. We first demonstrate a representation based on a template-frequency model (TFM) that allows the full use of the temporal dimension. We then integrate the TFM with a self-training neural network structure to adaptively capture different degrees of visual importance in a video sequence. Forward and backward signal propagation is the key in this automatic relevance feedback method in order to enhance retrieval accuracy.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1221631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents an automatic relevance feedback method for improving retrieval accuracy in video database. We first demonstrate a representation based on a template-frequency model (TFM) that allows the full use of the temporal dimension. We then integrate the TFM with a self-training neural network structure to adaptively capture different degrees of visual importance in a video sequence. Forward and backward signal propagation is the key in this automatic relevance feedback method in order to enhance retrieval accuracy.
自动相关性反馈视频检索
提出了一种提高视频数据库检索精度的自动关联反馈方法。我们首先展示了一个基于模板频率模型(TFM)的表示,该模型允许充分利用时间维度。然后,我们将TFM与自训练神经网络结构相结合,以自适应地捕获视频序列中不同程度的视觉重要性。在这种自动相关反馈方法中,信号的前向和后向传播是提高检索精度的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信