Foursquare to the Rescue: Predicting Ambulance Calls Across Geographies

A. Noulas, C. Moffatt, Desislava Hristova, Bruno Gonçalves
{"title":"Foursquare to the Rescue: Predicting Ambulance Calls Across Geographies","authors":"A. Noulas, C. Moffatt, Desislava Hristova, Bruno Gonçalves","doi":"10.1145/3194658.3194665","DOIUrl":null,"url":null,"abstract":"Understanding how ambulance incidents are spatially distributed can shed light to the epidemiological dynamics of geographic areas and inform healthcare policy design. Here we analyze a longitudinal dataset of more than four million ambulance calls across a region of twelve million residents in the North West of England. With the aim to explain geographic variations in ambulance call frequencies, we employ a wide range of data layers including open government datasets describing population demographics and socio-economic characteristics, as well as geographic activity in online services such as Foursquare. Working at a fine level of spatial granularity we demonstrate that daytime population levels and the deprivation status of an area are the most important variables when it comes to predicting the volume of ambulance calls at an area. Foursquare check-ins on the other hand complement these government sourced indicators, offering a novel view to population nightlife and commercial activity locally. We demonstrate how check-in activity can provide an edge when predicting certain types of emergency incidents in a multi-variate regression model.","PeriodicalId":216658,"journal":{"name":"Proceedings of the 2018 International Conference on Digital Health","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194658.3194665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Understanding how ambulance incidents are spatially distributed can shed light to the epidemiological dynamics of geographic areas and inform healthcare policy design. Here we analyze a longitudinal dataset of more than four million ambulance calls across a region of twelve million residents in the North West of England. With the aim to explain geographic variations in ambulance call frequencies, we employ a wide range of data layers including open government datasets describing population demographics and socio-economic characteristics, as well as geographic activity in online services such as Foursquare. Working at a fine level of spatial granularity we demonstrate that daytime population levels and the deprivation status of an area are the most important variables when it comes to predicting the volume of ambulance calls at an area. Foursquare check-ins on the other hand complement these government sourced indicators, offering a novel view to population nightlife and commercial activity locally. We demonstrate how check-in activity can provide an edge when predicting certain types of emergency incidents in a multi-variate regression model.
Foursquare 的救援:预测跨地域的救护车呼叫
了解救护车事故如何在空间上分布,可以揭示地理区域的流行病学动态,并为医疗保健政策设计提供信息。在这里,我们分析了英格兰西北部1200万居民地区超过400万次救护车呼叫的纵向数据集。为了解释救护车呼叫频率的地理差异,我们采用了广泛的数据层,包括描述人口统计和社会经济特征的开放政府数据集,以及在线服务(如Foursquare)中的地理活动。在空间粒度的精细水平上工作,我们证明,在预测一个地区的救护车呼叫量时,一个地区的白天人口水平和剥夺状态是最重要的变量。另一方面,Foursquare签到功能补充了这些政府来源的指标,为当地的人口、夜生活和商业活动提供了一种新颖的视角。我们展示了在多变量回归模型中,签到活动如何在预测某些类型的紧急事件时提供优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信