Drilling Tool Failure Diagnosis Based on GA-SVM

Yang Min, Liang Bin
{"title":"Drilling Tool Failure Diagnosis Based on GA-SVM","authors":"Yang Min, Liang Bin","doi":"10.1109/ICCIS.2012.132","DOIUrl":null,"url":null,"abstract":"Drilling tool failure is a major reason for low drilling speed, thus early drilling tool failure diagnosis is very important. Based on the generalization and approximation of non-linear capability of support vector machine (SVM) and the powerful ability of global optimization of genetic algorithm (GA), this paper establishes combined GA-SVM model through optimizing SVM parameters by GA. Then the model is used to forecast drilling tool failure of actual engineering practice. The experiment results show that optimal parameters searched by GA do significantly improve the forecast performance, and validates the effectiveness of the proposed algorithm, which provides a new method to forecast drilling tool failure.","PeriodicalId":269967,"journal":{"name":"2012 Fourth International Conference on Computational and Information Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2012.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Drilling tool failure is a major reason for low drilling speed, thus early drilling tool failure diagnosis is very important. Based on the generalization and approximation of non-linear capability of support vector machine (SVM) and the powerful ability of global optimization of genetic algorithm (GA), this paper establishes combined GA-SVM model through optimizing SVM parameters by GA. Then the model is used to forecast drilling tool failure of actual engineering practice. The experiment results show that optimal parameters searched by GA do significantly improve the forecast performance, and validates the effectiveness of the proposed algorithm, which provides a new method to forecast drilling tool failure.
基于GA-SVM的钻具故障诊断
钻具故障是钻井速度低的主要原因,因此早期诊断钻具故障非常重要。基于支持向量机(SVM)非线性能力的泛化和近似,以及遗传算法(GA)强大的全局寻优能力,通过遗传算法优化支持向量机参数,建立了GA-SVM组合模型。并将该模型应用于实际工程中钻具失效预测。实验结果表明,通过遗传算法搜索的最优参数显著提高了预测性能,验证了算法的有效性,为预测钻具故障提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信