Range image super-resolution via reconstruction of sparse range data

A. Bhavsar
{"title":"Range image super-resolution via reconstruction of sparse range data","authors":"A. Bhavsar","doi":"10.1109/ISSP.2013.6526902","DOIUrl":null,"url":null,"abstract":"We propose a method for super-resolution of range image. Our approach leverages the interpretation of LR image as sparse samples on the HR grid. Based on this interpretation, we build upon a recent approach which reconstructs dense range images from sparse range data. We notice certain shortcomings of this approach and propose some improvements, particularly, to address the super-resolution problem. Our method only uses a single colour image in addition to the range observation in the super-resolution process. Using the proposed approach, we demonstrate super-resolution results for large factors (e.g. 4 and 8) with good localization and accuracy.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a method for super-resolution of range image. Our approach leverages the interpretation of LR image as sparse samples on the HR grid. Based on this interpretation, we build upon a recent approach which reconstructs dense range images from sparse range data. We notice certain shortcomings of this approach and propose some improvements, particularly, to address the super-resolution problem. Our method only uses a single colour image in addition to the range observation in the super-resolution process. Using the proposed approach, we demonstrate super-resolution results for large factors (e.g. 4 and 8) with good localization and accuracy.
基于稀疏距离数据重建的距离图像超分辨率
提出了一种距离图像的超分辨方法。我们的方法利用LR图像作为HR网格上的稀疏样本的解释。基于这种解释,我们建立了一种最近的方法,从稀疏距离数据重建密集距离图像。我们注意到这种方法的某些缺点,并提出了一些改进,特别是解决超分辨率问题。该方法在超分辨过程中除了距离观测外,只使用单色图像。使用该方法,我们展示了具有良好定位和精度的大因子(例如4和8)的超分辨率结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信