Farah Khan, Amna Hassan, Syed Alamdar Ali Shah, Najma Nazeer, Alamgir Khan, Shahid Bukhari
{"title":"Analysis of the Historical Temperature of Different Cities of Pakistan to Determine the Trends and Shift in Temperature","authors":"Farah Khan, Amna Hassan, Syed Alamdar Ali Shah, Najma Nazeer, Alamgir Khan, Shahid Bukhari","doi":"10.33411/ijist/20202040305","DOIUrl":null,"url":null,"abstract":"Antrhopogenic activities are responsible for exponential increase in temperature in recent dacades. To examine this variation, data from 30 meteorological stations in Pakistan's largest cities were examined to determine the annual average and highest temperatures between 1981 and 2020. A combination of parametric and non-parametric tests, including Sen's slope estimator, the Mann-Kendall trend test, and linear regression, were utilized for the analysis. NASA Power Data Access Viewer provides historical climatic datasets which are reliable and provide promising results. We extracted historical footprints of climatic data from NASA website and mapped the trends. About 90% of the meterological stations had rising annual temperature trends, whereas 10% had declining trends. The average annual temperature increased by 0.49 °C per decade in Gilgit, Hyderabad, Quetta, and Lasbela, which was the largest rate of change. Chitral, Gilgit, Nawabshah, and Quetta experienced the biggest increase in annual temperature that was 0.34 °C per decade. Various indicators e.g., simple linear regression and the Mann-Kendall test, respectively, revealed that the yearly average temperature was rising at a 0.001 % (at the 0.06 level). Annual temperatures were increasing at 27 stations and 23 stations were experiencing 0.002 level of significance (at the 0.06 level). Overall, the findings indicated that all climatic parameters were increasing, but during the study period, the annual average temperature was increasing more quickly than the annual maximum temperature.","PeriodicalId":326014,"journal":{"name":"Vol 4 Issue 3","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vol 4 Issue 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33411/ijist/20202040305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Antrhopogenic activities are responsible for exponential increase in temperature in recent dacades. To examine this variation, data from 30 meteorological stations in Pakistan's largest cities were examined to determine the annual average and highest temperatures between 1981 and 2020. A combination of parametric and non-parametric tests, including Sen's slope estimator, the Mann-Kendall trend test, and linear regression, were utilized for the analysis. NASA Power Data Access Viewer provides historical climatic datasets which are reliable and provide promising results. We extracted historical footprints of climatic data from NASA website and mapped the trends. About 90% of the meterological stations had rising annual temperature trends, whereas 10% had declining trends. The average annual temperature increased by 0.49 °C per decade in Gilgit, Hyderabad, Quetta, and Lasbela, which was the largest rate of change. Chitral, Gilgit, Nawabshah, and Quetta experienced the biggest increase in annual temperature that was 0.34 °C per decade. Various indicators e.g., simple linear regression and the Mann-Kendall test, respectively, revealed that the yearly average temperature was rising at a 0.001 % (at the 0.06 level). Annual temperatures were increasing at 27 stations and 23 stations were experiencing 0.002 level of significance (at the 0.06 level). Overall, the findings indicated that all climatic parameters were increasing, but during the study period, the annual average temperature was increasing more quickly than the annual maximum temperature.