{"title":"Automatic Species Recognition Based on Improved Birdsong Analysis","authors":"Joshua Knapp, Guangzhi Qu, Feng Zhang","doi":"10.1109/ICMLA.2016.0037","DOIUrl":null,"url":null,"abstract":"This work seeks to improve upon the accuracy of birdsong analysis based species recognition. We intend to accomplish this by creating a more effective bird syllable segmentation algorithms (MIRS), Support Vector machine based classifiers are used to train the features of IRS and MIRS. The experimental results show the effectiveness of the proposed algorithm.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This work seeks to improve upon the accuracy of birdsong analysis based species recognition. We intend to accomplish this by creating a more effective bird syllable segmentation algorithms (MIRS), Support Vector machine based classifiers are used to train the features of IRS and MIRS. The experimental results show the effectiveness of the proposed algorithm.