On Characterization of Entropic Vectors at the Boundary of Almost Entropic Cones

Hitika Tiwari, Satyajit Thakor
{"title":"On Characterization of Entropic Vectors at the Boundary of Almost Entropic Cones","authors":"Hitika Tiwari, Satyajit Thakor","doi":"10.1109/ITW44776.2019.8989116","DOIUrl":null,"url":null,"abstract":"The entropy region is a fundamental object in information theory. An outer bound for the entropy region is defined by a minimal set of Shannon-type inequalities called elemental inequalities also referred to as the Shannon region. This paper focuses on characterization of the entropic points at the boundary of the Shannon region for three random variables. The proper faces of the Shannon region form its boundary. We give new outer bounds for the entropy region in certain faces and show by explicit construction of distributions that the existing inner bounds for the entropy region in certain faces are not tight.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The entropy region is a fundamental object in information theory. An outer bound for the entropy region is defined by a minimal set of Shannon-type inequalities called elemental inequalities also referred to as the Shannon region. This paper focuses on characterization of the entropic points at the boundary of the Shannon region for three random variables. The proper faces of the Shannon region form its boundary. We give new outer bounds for the entropy region in certain faces and show by explicit construction of distributions that the existing inner bounds for the entropy region in certain faces are not tight.
概熵锥边界上熵向量的刻画
熵域是信息论中的一个基本对象。熵域的外界由香农型不等式的最小集定义,称为元素不等式,也称为香农区域。本文研究了三个随机变量的香农区边界熵点的特征。香农地区的固有面形成了它的边界。我们给出了某些面熵区域的新外边界,并通过显式构造分布证明了某些面熵区域的现有内边界不紧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信