Comparative ANFIS Models for Stochastic On-road Vehicle CO2 Emission using Grid Partitioning, Subtractive, and Fuzzy C-means Clustering

Maria Gemel B. Palconit, Ronnie S. Conception, Jonnel D. Alejandrino, Warren A. Nunez, A. Bandala, E. Dadios
{"title":"Comparative ANFIS Models for Stochastic On-road Vehicle CO2 Emission using Grid Partitioning, Subtractive, and Fuzzy C-means Clustering","authors":"Maria Gemel B. Palconit, Ronnie S. Conception, Jonnel D. Alejandrino, Warren A. Nunez, A. Bandala, E. Dadios","doi":"10.1109/R10-HTC53172.2021.9641644","DOIUrl":null,"url":null,"abstract":"On-road vehicle CO2 emission is stochastic and is presently not feasible to be solved using hard computing methodologies due to computational cost. This paper presents an on-road paratransit vehicle CO2 emission estimation model using an adaptive neuro-fuzzy inference system (ANFIS). With input parameters, namely, the speed, slope, and acceleration, three ANFIS clustering types were utilized. Results have shown that Fuzzy-C means clustering method (FCM) obtained the best performance concerning error rates and computation simplicity. Specifically, it has yielded 13.38% NRMSE using five membership functions per input and five fuzzy rules. The grid partitioning (GP) obtained the worst prediction output while the subtractive clustering method (SCM) has comparable prediction accuracy with FCM but has a higher computational cost compared to the latter. The proposed estimation model is beneficial for paratransit vehicles wherein the state-of-the-art on-road emission models are deemed unsuitable.","PeriodicalId":117626,"journal":{"name":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC53172.2021.9641644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

On-road vehicle CO2 emission is stochastic and is presently not feasible to be solved using hard computing methodologies due to computational cost. This paper presents an on-road paratransit vehicle CO2 emission estimation model using an adaptive neuro-fuzzy inference system (ANFIS). With input parameters, namely, the speed, slope, and acceleration, three ANFIS clustering types were utilized. Results have shown that Fuzzy-C means clustering method (FCM) obtained the best performance concerning error rates and computation simplicity. Specifically, it has yielded 13.38% NRMSE using five membership functions per input and five fuzzy rules. The grid partitioning (GP) obtained the worst prediction output while the subtractive clustering method (SCM) has comparable prediction accuracy with FCM but has a higher computational cost compared to the latter. The proposed estimation model is beneficial for paratransit vehicles wherein the state-of-the-art on-road emission models are deemed unsuitable.
基于网格划分、减法和模糊c均值聚类的随机道路车辆CO2排放ANFIS模型比较
道路车辆二氧化碳排放是随机的,由于计算成本的原因,目前还不能用硬计算方法来求解。提出了一种基于自适应神经模糊推理系统(ANFIS)的道路辅助交通车辆CO2排放估算模型。以速度、斜率和加速度为输入参数,利用三种ANFIS聚类类型。结果表明,模糊c均值聚类方法在错误率和计算简单性方面具有最佳性能。具体来说,它使用每个输入的五个隶属函数和五个模糊规则产生了13.38%的NRMSE。网格划分法(GP)的预测输出最差,而减法聚类法(SCM)的预测精度与FCM相当,但计算成本较高。本文提出的估计模型适用于当前最先进的道路排放模型不适合的辅助交通车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信