Segmentation of Benign and Malign lesions on skin images using U-Net

Elif Işılay Ünlü, A. Cinar
{"title":"Segmentation of Benign and Malign lesions on skin images using U-Net","authors":"Elif Işılay Ünlü, A. Cinar","doi":"10.1109/3ICT53449.2021.9581463","DOIUrl":null,"url":null,"abstract":"One of the types of cancer that requires early diagnosis is skin cancer. Melanoma is a deadly type of skin cancer. Computer-aided systems can detect the findings in medical examinations that human perception cannot recognize, and these findings can help the clinicans to make an early diagnosis. Therefore, the need for computer aided systems has increased. In this study, a deep learning-based method that segments melanoma with color images taken from dermoscopy devices is proposed. For this method, ISIC 2017 (International Skin Image Collaboration) database is used. It contains 1403 training and 597 test data. The method is based on preprocessing and U-Net architecture. Gaussian and Difference of Gaussian (DoG) filters are used in the preprocessing stage. It is aimed to make skin images more convenient before U-Net. As a result of the segmentation performed with these data, the education success rate reached 96-95%. A high similarity coefficient obtained. On the other hand, as a result of the training of the preprocessed data, accuracy rate has reached 86-85%.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

One of the types of cancer that requires early diagnosis is skin cancer. Melanoma is a deadly type of skin cancer. Computer-aided systems can detect the findings in medical examinations that human perception cannot recognize, and these findings can help the clinicans to make an early diagnosis. Therefore, the need for computer aided systems has increased. In this study, a deep learning-based method that segments melanoma with color images taken from dermoscopy devices is proposed. For this method, ISIC 2017 (International Skin Image Collaboration) database is used. It contains 1403 training and 597 test data. The method is based on preprocessing and U-Net architecture. Gaussian and Difference of Gaussian (DoG) filters are used in the preprocessing stage. It is aimed to make skin images more convenient before U-Net. As a result of the segmentation performed with these data, the education success rate reached 96-95%. A high similarity coefficient obtained. On the other hand, as a result of the training of the preprocessed data, accuracy rate has reached 86-85%.
基于U-Net的皮肤图像良恶性病灶分割
其中一种需要早期诊断的癌症是皮肤癌。黑色素瘤是一种致命的皮肤癌。计算机辅助系统可以检测到医学检查中人类感知无法识别的发现,这些发现可以帮助临床医生做出早期诊断。因此,对计算机辅助系统的需求增加了。在这项研究中,提出了一种基于深度学习的方法,利用皮肤镜设备拍摄的彩色图像对黑色素瘤进行分割。该方法使用ISIC 2017 (International Skin Image Collaboration)数据库。它包含1403个训练数据和597个测试数据。该方法基于预处理和U-Net体系结构。预处理阶段采用高斯滤波和高斯差分滤波(DoG)。它的目的是使皮肤图像在U-Net之前更方便。利用这些数据进行分割,教育成功率达到96-95%。得到了较高的相似系数。另一方面,经过预处理数据的训练,准确率达到86-85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信