Crowdsourcing synset relations with Genus-Species-Match

Dmitry Ustalov
{"title":"Crowdsourcing synset relations with Genus-Species-Match","authors":"Dmitry Ustalov","doi":"10.1109/AINL-ISMW-FRUCT.2015.7382980","DOIUrl":null,"url":null,"abstract":"Enabling a domain-specific lexical resource is useful for improving the performance of a natural language processing system. However, such resources may be represented in the form of glossaries-terms provided with their sense definitions. Despite the problem of integrating such domain-specific glossaries into more sophisticated general purpose resources like thesuari being highly topical, it is complicated by ambiguity of the individual terms. This paper presents Genus-Species-Match, a crowdsourcing workflow for matching noisy pairs of synsets representing hyponymic/hypernymic relations. The system demonstrates F1 score of 80% on an experiment conducted on an online labor marketplace using the EMERCOM glossary and the Yet Another RussNet sense inventory.","PeriodicalId":122232,"journal":{"name":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","volume":"137 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Enabling a domain-specific lexical resource is useful for improving the performance of a natural language processing system. However, such resources may be represented in the form of glossaries-terms provided with their sense definitions. Despite the problem of integrating such domain-specific glossaries into more sophisticated general purpose resources like thesuari being highly topical, it is complicated by ambiguity of the individual terms. This paper presents Genus-Species-Match, a crowdsourcing workflow for matching noisy pairs of synsets representing hyponymic/hypernymic relations. The system demonstrates F1 score of 80% on an experiment conducted on an online labor marketplace using the EMERCOM glossary and the Yet Another RussNet sense inventory.
众包词集与属-种-匹配的关系
启用特定于领域的词汇资源对于提高自然语言处理系统的性能非常有用。但是,这些资源可以用词汇表的形式表示,即提供了其含义定义的术语。尽管将这些特定于领域的词汇表集成到更复杂的通用资源(如高度热门的thesuari)中存在问题,但单个术语的模糊性使问题变得更加复杂。本文提出了一种众包工作流,用于匹配表示上下名关系的同义词集的噪声对。在使用EMERCOM词汇表和Yet Another RussNet感官清单的在线劳动力市场上进行的实验中,该系统显示F1得分为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信