{"title":"The first Robert Furchgott lecture: from endothelium-dependent relaxation to the L-arginine:NO pathway.","authors":"S Moncada","doi":"10.1159/000158812","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) is released from vascular endothelial cells and fresh vascular tissue in amounts sufficient to account for the biological actions of endothelium-derived relaxing factor. It is synthesized from the terminal guanidino nitrogen atom(s) of L-arginine, a process that is inhibited by NG-monomethyl-L-arginine (L-NMMA). Studies using L-NMMA have shown that NO is constantly generated by the vessel wall to maintain vasodilator tone. The L-arginine:NO pathway has now been identified in a number of other cells and tissues, in many of which it acts as the transduction mechanism for stimulation of the soluble guanylate cyclase.</p>","PeriodicalId":9009,"journal":{"name":"Blood vessels","volume":"27 2-5","pages":"208-17"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000158812","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood vessels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000158812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
Nitric oxide (NO) is released from vascular endothelial cells and fresh vascular tissue in amounts sufficient to account for the biological actions of endothelium-derived relaxing factor. It is synthesized from the terminal guanidino nitrogen atom(s) of L-arginine, a process that is inhibited by NG-monomethyl-L-arginine (L-NMMA). Studies using L-NMMA have shown that NO is constantly generated by the vessel wall to maintain vasodilator tone. The L-arginine:NO pathway has now been identified in a number of other cells and tissues, in many of which it acts as the transduction mechanism for stimulation of the soluble guanylate cyclase.