Simplifying Support Vector Machines for classification of hyperspectral imagery and selection of relevant features

Andreas Rabe, S. Linden, P. Hostert
{"title":"Simplifying Support Vector Machines for classification of hyperspectral imagery and selection of relevant features","authors":"Andreas Rabe, S. Linden, P. Hostert","doi":"10.1109/WHISPERS.2010.5594937","DOIUrl":null,"url":null,"abstract":"Support Vector Machines (SVM) for image classification proved to perform well in many applications. However, they are often not preferred in hyperspectral image analysis due to long processing times caused by a high number of support vectors and large data sets. We present two approaches that speed-up the classification process with SVM by a) simplifying the original SVM, i.e. reducing the number of support vectors, and b) reducing the number of features by selecting relevant, non-redundant features. Results for three classification problems are shown. By applying the two approaches, we observe reduction rates a) between 9.1% and 27.2% for the number of support vectors and b) from 86.8% to 93.0% of features, both without significant decreases in classification accuracy. This enables a fast mapping of complete hyperspectral scenes.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Support Vector Machines (SVM) for image classification proved to perform well in many applications. However, they are often not preferred in hyperspectral image analysis due to long processing times caused by a high number of support vectors and large data sets. We present two approaches that speed-up the classification process with SVM by a) simplifying the original SVM, i.e. reducing the number of support vectors, and b) reducing the number of features by selecting relevant, non-redundant features. Results for three classification problems are shown. By applying the two approaches, we observe reduction rates a) between 9.1% and 27.2% for the number of support vectors and b) from 86.8% to 93.0% of features, both without significant decreases in classification accuracy. This enables a fast mapping of complete hyperspectral scenes.
简化支持向量机用于高光谱图像的分类和相关特征的选择
支持向量机(SVM)在图像分类中得到了广泛的应用。然而,由于大量的支持向量和大数据集导致处理时间长,它们通常不适合用于高光谱图像分析。我们提出了两种加速支持向量机分类过程的方法:a)简化原始支持向量机,即减少支持向量的数量;b)通过选择相关的非冗余特征来减少特征的数量。给出了三个分类问题的结果。通过应用这两种方法,我们观察到a)支持向量数量的减少率在9.1%到27.2%之间,b)特征的减少率在86.8%到93.0%之间,分类精度都没有显著降低。这使得快速映射完整的高光谱场景成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信