Heat Transfer and Pressure Drop of CO2 Flow Boiling in Microchannels

Yuan Zhao, M. Molki, M. Ohadi
{"title":"Heat Transfer and Pressure Drop of CO2 Flow Boiling in Microchannels","authors":"Yuan Zhao, M. Molki, M. Ohadi","doi":"10.1115/imece2000-1433","DOIUrl":null,"url":null,"abstract":"\n An experimental investigation was performed to study the flow boiling heat transfer of CO2 in microchannels. Tests were conducted in a horizontal triangular microchannel with the hydraulic diameter of 0.86 mm. Heat to the test section was provided by direct electrical heating. Experiments were conducted with CO2 at saturation temperatures of 273 to 293 K, mass fluxes of 100 to 820 kg/m2s, heat fluxes of 3 to 23 kW/m2, and qualities of 20% to 85%. It was demonstrated that heat flux had an enhancing effect on the heat transfer coefficient, while mass flux had a negligible effect. Nucleate boiling mechanism is found to be the dominant factor for CO2 flow boiling in microchannels. Heat transfer coefficient degraded quickly at high vapor quality region (0.6–0.7), which is possibly due to flow mal-distribution. Pressure drop increases slightly with vapor quality and/or heat flux. Mass flux has a strong increasing effect on pressure drop.","PeriodicalId":201774,"journal":{"name":"Heat Transfer: Volume 2","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An experimental investigation was performed to study the flow boiling heat transfer of CO2 in microchannels. Tests were conducted in a horizontal triangular microchannel with the hydraulic diameter of 0.86 mm. Heat to the test section was provided by direct electrical heating. Experiments were conducted with CO2 at saturation temperatures of 273 to 293 K, mass fluxes of 100 to 820 kg/m2s, heat fluxes of 3 to 23 kW/m2, and qualities of 20% to 85%. It was demonstrated that heat flux had an enhancing effect on the heat transfer coefficient, while mass flux had a negligible effect. Nucleate boiling mechanism is found to be the dominant factor for CO2 flow boiling in microchannels. Heat transfer coefficient degraded quickly at high vapor quality region (0.6–0.7), which is possibly due to flow mal-distribution. Pressure drop increases slightly with vapor quality and/or heat flux. Mass flux has a strong increasing effect on pressure drop.
微通道内CO2流动沸腾的传热与压降
对CO2在微通道内的流动沸腾换热进行了实验研究。试验在水力直径为0.86 mm的水平三角形微通道中进行。通过直接电加热为试验段提供热量。实验条件为饱和温度273 ~ 293 K,质量通量100 ~ 820 kg/m2,热流3 ~ 23 kW/m2,质量质量为20% ~ 85%。结果表明,热通量对传热系数有增强作用,而质量通量对传热系数的影响可以忽略不计。研究发现,成核沸腾机制是微通道中CO2流动沸腾的主导因素。在高汽质区(0.6 ~ 0.7)换热系数下降较快,这可能是由于流动分布不均匀所致。随着蒸汽质量和/或热通量的增加,压降略有增加。质量通量对压降有较强的增加作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信