A multi-objective membrane algorithm for knapsack problems

Gexiang Zhang, Yuquan Li, M. Gheorghe
{"title":"A multi-objective membrane algorithm for knapsack problems","authors":"Gexiang Zhang, Yuquan Li, M. Gheorghe","doi":"10.1109/BICTA.2010.5645194","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective membrane algorithm, called MOMA, for solving multi-objective knapsack problems. MOMA is designed with the framework and rules of a cell-like P system, and concepts and principles of quantum-inspired evolutionary algorithms. Three bench knapsack problems used frequently in the literature are applied to test MOMA performance. Experimental results show that MOMA outperforms its counterpart quantum-inspired evolutionary algorithm and several good multi-objective evolutionary algorithms reported in the literature, in terms of Pareto front and performance measures.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes a multi-objective membrane algorithm, called MOMA, for solving multi-objective knapsack problems. MOMA is designed with the framework and rules of a cell-like P system, and concepts and principles of quantum-inspired evolutionary algorithms. Three bench knapsack problems used frequently in the literature are applied to test MOMA performance. Experimental results show that MOMA outperforms its counterpart quantum-inspired evolutionary algorithm and several good multi-objective evolutionary algorithms reported in the literature, in terms of Pareto front and performance measures.
背包问题的多目标膜算法
本文提出了一种求解多目标背包问题的多目标膜算法MOMA。MOMA的设计采用了类似细胞的P系统的框架和规则,以及量子进化算法的概念和原理。本文采用了文献中常用的三个台架背包问题来测试MOMA的性能。实验结果表明,MOMA在帕累托前沿和性能指标方面优于量子启发的进化算法和文献中报道的几种优秀的多目标进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信