Source localization based on particle swarm optimization for wireless sensor network

Yue Huang, Chengdong Wu, Yunzhou Zhang, Jian Zhang
{"title":"Source localization based on particle swarm optimization for wireless sensor network","authors":"Yue Huang, Chengdong Wu, Yunzhou Zhang, Jian Zhang","doi":"10.1109/PIC.2010.5687575","DOIUrl":null,"url":null,"abstract":"In this paper, a particle swarm optimization approach for the energy-based acoustic source localization of a wireless sensor network is presented. For this work, it is assumed that there is one acoustic source with unknown localizations which transmit acoustic signals that can be received by the nodes. The only available information to the system is the received signal energy which is not very accurate in general because of the attenuation in the process of propagation. To obtain better estimated localization of the acoustic source, maximum likelihood method is applied to transform it into extremal function, the particle swarm optimization scheme searches the optimal solution. Experimental results show that the proposed approach has the advantages of higher precision and lower computational complexity.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a particle swarm optimization approach for the energy-based acoustic source localization of a wireless sensor network is presented. For this work, it is assumed that there is one acoustic source with unknown localizations which transmit acoustic signals that can be received by the nodes. The only available information to the system is the received signal energy which is not very accurate in general because of the attenuation in the process of propagation. To obtain better estimated localization of the acoustic source, maximum likelihood method is applied to transform it into extremal function, the particle swarm optimization scheme searches the optimal solution. Experimental results show that the proposed approach has the advantages of higher precision and lower computational complexity.
基于粒子群优化的无线传感器网络源定位
提出了一种基于能量的无线传感器网络声源定位的粒子群优化方法。对于这项工作,假设存在一个未知定位的声源,该声源发射的声信号可被节点接收。系统唯一可用的信息是接收到的信号能量,由于传播过程中的衰减,通常不是很准确。为了获得更好的声源定位估计,采用极大似然法将其转化为极值函数,采用粒子群优化方案搜索最优解。实验结果表明,该方法具有精度高、计算复杂度低的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信