High-resolution Two-dimensional Direction Finding For Uniform Circular Array

A.Y.J. Chan, J. Litva
{"title":"High-resolution Two-dimensional Direction Finding For Uniform Circular Array","authors":"A.Y.J. Chan, J. Litva","doi":"10.1109/SSAP.1994.572466","DOIUrl":null,"url":null,"abstract":"This paper concerns the application of multiple signal classification (MUSIC) and maximum likelihood (ML) techniques to the joint azimuthal and elevational directions-of-arrival (AEDOA) estimation with a uniform circular array. The deterministic and the random source signal models are used. Computer simulations and theoretical predictions are provided to compare the MUSIC and ML performance. It is shown that the unconditional ML method outperforms the deterministic ML method, which in turn outperforms the MUSIC method.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper concerns the application of multiple signal classification (MUSIC) and maximum likelihood (ML) techniques to the joint azimuthal and elevational directions-of-arrival (AEDOA) estimation with a uniform circular array. The deterministic and the random source signal models are used. Computer simulations and theoretical predictions are provided to compare the MUSIC and ML performance. It is shown that the unconditional ML method outperforms the deterministic ML method, which in turn outperforms the MUSIC method.
均匀圆形阵列的高分辨率二维测向
本文研究了多信号分类(MUSIC)和最大似然(ML)技术在均匀圆阵方位和高度联合到达方向估计中的应用。采用了确定性和随机源信号模型。提供了计算机模拟和理论预测来比较MUSIC和ML性能。结果表明,无条件机器学习方法优于确定性机器学习方法,确定性机器学习方法又优于MUSIC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信