Reduction of autoregressive noise with shift-invariant wavelet-packets

N. Whitmal, J. C. Rutledge, J. Cohen
{"title":"Reduction of autoregressive noise with shift-invariant wavelet-packets","authors":"N. Whitmal, J. C. Rutledge, J. Cohen","doi":"10.1109/TFSA.1996.546705","DOIUrl":null,"url":null,"abstract":"We present a new wavelet-based method for reducing additive autoregressive noise. The method uses a shift-invariant wavelet-packet transform to facilitate a linear transformation of wavelet-packet basis vectors. The transformed basis vectors are shown to be better suited than the original basis vectors for use in conventional wavelet-based denoising algorithms which use the minimum description length (MDL) or thresholding approaches. A computational example is presented which demonstrates the advantages of the new algorithm. Autoregressive (AR) models provide a useful tool for adapting the MDL algorithm to the reduction of correlated noise. A straightforward adaptation involves fitting an AR model to the noise component, building an FIR prediction-error filter from the AR model, and using the filter to whiten the noise component.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.546705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a new wavelet-based method for reducing additive autoregressive noise. The method uses a shift-invariant wavelet-packet transform to facilitate a linear transformation of wavelet-packet basis vectors. The transformed basis vectors are shown to be better suited than the original basis vectors for use in conventional wavelet-based denoising algorithms which use the minimum description length (MDL) or thresholding approaches. A computational example is presented which demonstrates the advantages of the new algorithm. Autoregressive (AR) models provide a useful tool for adapting the MDL algorithm to the reduction of correlated noise. A straightforward adaptation involves fitting an AR model to the noise component, building an FIR prediction-error filter from the AR model, and using the filter to whiten the noise component.
平移不变性小波包的自回归降噪
提出了一种新的基于小波的自回归噪声降噪方法。该方法采用平移不变小波包变换,便于对小波包基向量进行线性变换。变换后的基向量比原始基向量更适合用于传统的基于小波的去噪算法,这些算法使用最小描述长度(MDL)或阈值方法。算例表明了新算法的优越性。自回归(AR)模型为MDL算法适应相关噪声的降低提供了一个有用的工具。一种简单的自适应方法包括将AR模型拟合到噪声分量上,从AR模型构建FIR预测误差滤波器,并使用该滤波器来漂白噪声分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信