Intelligent wind farm data automation using IEC standards

F. Barouni
{"title":"Intelligent wind farm data automation using IEC standards","authors":"F. Barouni","doi":"10.1109/SASG.2016.7849669","DOIUrl":null,"url":null,"abstract":"Wind power as a green and renewable source of energy is growing very fast. Governments and utilities around the world have encouraged over the last years the commissioning of wind farm projects — using wind as a clean power source. This led to the development of new standards and architectures to make wind farm data available and meet the requirements for wind farm monitoring. In this paper, we propose a novel approach to automate wind farm data. The solution processes collected data and generates non-operational information that will serve for production and wind power forecasting as well as operational information, such as turbine status, turbine counters, active power of each turbine and total power of the wind farm. Using the IEC 61400 protocol and IEC 61131-3 automation languages embedded in a data concentrator, our solution communicates with various components and concentrates the data to make it available to different clients. In addition, the collected data will be processed to generate statistical information (periodic, minimum, maximum, average and standard deviation) and key indicator information (availability counters, power) thanks to a customized automation module.","PeriodicalId":343189,"journal":{"name":"2016 Saudi Arabia Smart Grid (SASG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Saudi Arabia Smart Grid (SASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASG.2016.7849669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wind power as a green and renewable source of energy is growing very fast. Governments and utilities around the world have encouraged over the last years the commissioning of wind farm projects — using wind as a clean power source. This led to the development of new standards and architectures to make wind farm data available and meet the requirements for wind farm monitoring. In this paper, we propose a novel approach to automate wind farm data. The solution processes collected data and generates non-operational information that will serve for production and wind power forecasting as well as operational information, such as turbine status, turbine counters, active power of each turbine and total power of the wind farm. Using the IEC 61400 protocol and IEC 61131-3 automation languages embedded in a data concentrator, our solution communicates with various components and concentrates the data to make it available to different clients. In addition, the collected data will be processed to generate statistical information (periodic, minimum, maximum, average and standard deviation) and key indicator information (availability counters, power) thanks to a customized automation module.
采用IEC标准的智能风电场数据自动化
风能作为一种绿色可再生能源,发展非常迅速。在过去的几年里,世界各地的政府和公用事业公司都在鼓励风电场项目的投产——利用风能作为一种清洁能源。这导致了新的标准和架构的发展,使风电场数据可用,并满足风电场监测的要求。在本文中,我们提出了一种自动化风力发电场数据的新方法。该解决方案对收集到的数据进行处理,生成用于生产和风电预测的非运行信息以及运行信息,如涡轮机状态、涡轮机计数器、每台涡轮机的有功功率和风电场的总功率。通过在数据集中器中嵌入IEC 61400协议和IEC 61131-3自动化语言,我们的解决方案可以与各种组件进行通信,并将数据集中到不同的客户端。此外,收集到的数据将通过定制的自动化模块进行处理,生成统计信息(周期、最小、最大、平均和标准差)和关键指标信息(可用性计数器、功率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信