Sampling Based N-Hash Algorithm for Searching Frequent Itemset

Yong-ming Chen, Mei-ling Zhu
{"title":"Sampling Based N-Hash Algorithm for Searching Frequent Itemset","authors":"Yong-ming Chen, Mei-ling Zhu","doi":"10.1109/ITAPP.2010.5566076","DOIUrl":null,"url":null,"abstract":"Searching frequent itemsets is the critical problem in generating association rules in data mining, classic Hash-based technique, put forward by J. S. Park, for searching frequent itemsets has two shortcomings: one is that it is difficult to choose an appropriate hash function; the other is that it is liable to cause hash colliding. In order to solve the two problems, Chen Y.M. proposed N-Hash algorithm which needn't to choose hash function and avoided hash colliding. In this paper, the sampling technique is employed to improve the efficiency of N-Hash algorithm.","PeriodicalId":116013,"journal":{"name":"2010 International Conference on Internet Technology and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Internet Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAPP.2010.5566076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Searching frequent itemsets is the critical problem in generating association rules in data mining, classic Hash-based technique, put forward by J. S. Park, for searching frequent itemsets has two shortcomings: one is that it is difficult to choose an appropriate hash function; the other is that it is liable to cause hash colliding. In order to solve the two problems, Chen Y.M. proposed N-Hash algorithm which needn't to choose hash function and avoided hash colliding. In this paper, the sampling technique is employed to improve the efficiency of N-Hash algorithm.
基于采样的频繁项集搜索n -哈希算法
频繁项集的搜索是数据挖掘中关联规则生成的关键问题,J. S. Park提出的经典哈希技术用于频繁项集的搜索存在两个缺点:一是难以选择合适的哈希函数;另一个是它容易导致哈希碰撞。为了解决这两个问题,陈彦明提出了N-Hash算法,该算法不需要选择哈希函数,避免了哈希碰撞。本文采用采样技术来提高n -哈希算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信