{"title":"Biogenesis and functional RNAi in fruit trees.","authors":"M. Ravelonandro, P. Briard","doi":"10.1079/9781789248890.0040","DOIUrl":null,"url":null,"abstract":"Abstract\n In plants, genome expression is linked to the transcribed mRNAs that are synthesized by RNA polymerase. Following its move to the cytoplasm, the generated mRNA is briefly translated to the encoded protein. If transcription and translation are dependent on the family of RNA polymerase, these two phenomena could be interfered with through the process designated as gene regulation. Thus, large molecules of RNA (single-stranded or double-stranded) consequently sliced into small molecules produce nascent small interfering RNA ranging from 21 to 27 nucleotides. This chapter revisits the biogenesis of these two types of RNAi, miRNA and siRNA, and notably their involvement in plant gene regulation. Following their sequential transcription and their specific involvement, we will consider the sources and roles of RNA interference in plants and we will look at their detection in fruit crops. We discuss their applications and the risk assessment studies in fruit crops.","PeriodicalId":121833,"journal":{"name":"RNAi for plant improvement and protection","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNAi for plant improvement and protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789248890.0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract
In plants, genome expression is linked to the transcribed mRNAs that are synthesized by RNA polymerase. Following its move to the cytoplasm, the generated mRNA is briefly translated to the encoded protein. If transcription and translation are dependent on the family of RNA polymerase, these two phenomena could be interfered with through the process designated as gene regulation. Thus, large molecules of RNA (single-stranded or double-stranded) consequently sliced into small molecules produce nascent small interfering RNA ranging from 21 to 27 nucleotides. This chapter revisits the biogenesis of these two types of RNAi, miRNA and siRNA, and notably their involvement in plant gene regulation. Following their sequential transcription and their specific involvement, we will consider the sources and roles of RNA interference in plants and we will look at their detection in fruit crops. We discuss their applications and the risk assessment studies in fruit crops.