Understanding Sequence Variability of RNA Motifs Using Geometric Search and IsoDiscrepancy Matrices

Anton I. Petrov, Jesse Stombaugh, Craig L. Zirbel, N. Leontis
{"title":"Understanding Sequence Variability of RNA Motifs Using Geometric Search and IsoDiscrepancy Matrices","authors":"Anton I. Petrov, Jesse Stombaugh, Craig L. Zirbel, N. Leontis","doi":"10.1109/OCCBIO.2009.15","DOIUrl":null,"url":null,"abstract":"Many of the nominally single-stranded hairpin, internal, and junction “loop” regions of RNA secondary structures, in fact, form uniquely folded 3D motifs. These elements are largely structured by non-Watson-Crick basepairs. Many 3D motifs are recurrent, meaning they occur in different RNAs. Recurrent motifs have the same 3D structure but not necessarily the same sequence. We describe a methodology for identifying the sequence variability of a given recurrent RNA internal loop that can be generalized to hairpin and junction loops. Since the database of RNA 3D structures now contains a significant number of biologically active, structured RNAs, including ribosomal RNAs, ribozymes, and riboswitches, we can directly observe some of the sequence variability for recurrent motifs in x-ray crystal structures. We use our search program, FR3D, to search the 3D structure database for geometrically similar motif instances that share the same spatial pattern of basepairs. We apply our analysis of RNA basepair isostericity and occurrence frequencies to suggest likely basepair substitutions. We use the IsoDiscrepancy Index (IDI), which we recently introduced to quantify basepair isostericities, to derive 4x4 IDI Tables for each base combination in each basepair family. We illustrate how these tables can be applied to predict the most likely base substitutions that occur in a 3D motif. By comparing observed motif instances, we also determine the most likely locations of inserted (\"bulged\") nucleotides. We compare the predictions from these considerations to observed variability in multiple sequence alignments of the motif.","PeriodicalId":231499,"journal":{"name":"2009 Ohio Collaborative Conference on Bioinformatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ohio Collaborative Conference on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCCBIO.2009.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many of the nominally single-stranded hairpin, internal, and junction “loop” regions of RNA secondary structures, in fact, form uniquely folded 3D motifs. These elements are largely structured by non-Watson-Crick basepairs. Many 3D motifs are recurrent, meaning they occur in different RNAs. Recurrent motifs have the same 3D structure but not necessarily the same sequence. We describe a methodology for identifying the sequence variability of a given recurrent RNA internal loop that can be generalized to hairpin and junction loops. Since the database of RNA 3D structures now contains a significant number of biologically active, structured RNAs, including ribosomal RNAs, ribozymes, and riboswitches, we can directly observe some of the sequence variability for recurrent motifs in x-ray crystal structures. We use our search program, FR3D, to search the 3D structure database for geometrically similar motif instances that share the same spatial pattern of basepairs. We apply our analysis of RNA basepair isostericity and occurrence frequencies to suggest likely basepair substitutions. We use the IsoDiscrepancy Index (IDI), which we recently introduced to quantify basepair isostericities, to derive 4x4 IDI Tables for each base combination in each basepair family. We illustrate how these tables can be applied to predict the most likely base substitutions that occur in a 3D motif. By comparing observed motif instances, we also determine the most likely locations of inserted ("bulged") nucleotides. We compare the predictions from these considerations to observed variability in multiple sequence alignments of the motif.
利用几何搜索和等差矩阵理解RNA基序的序列变异
许多RNA二级结构的名义上单链发夹,内部和连接“环”区域,实际上形成独特的折叠3D基序。这些元素主要由非沃森-克里克碱基对构成。许多3D基序是反复出现的,这意味着它们出现在不同的rna中。反复出现的图案具有相同的3D结构,但不一定具有相同的序列。我们描述了一种方法来识别序列可变性的一个给定的循环RNA内部环,可以推广到发夹和连接环。由于RNA 3D结构数据库现在包含大量具有生物活性的结构化RNA,包括核糖体RNA、核酶和核开关,我们可以直接观察到x射线晶体结构中反复出现的基序的一些序列变异性。我们使用我们的搜索程序FR3D在三维结构数据库中搜索具有相同碱基对空间模式的几何相似基序实例。我们应用我们的分析RNA碱基对等静力性和发生频率,以建议可能的碱基对取代。我们使用最近引入的等差指数(IDI)来量化碱基对等构性,从而得出每个碱基对家族中每个碱基组合的4x4 IDI表。我们说明如何这些表可以应用于预测最可能的碱基替换,发生在一个3D图案。通过比较观察到的基序实例,我们还确定了插入(“凸起”)核苷酸的最可能位置。我们将这些预测与观察到的多序列序列比对的可变性进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信