Iterative semi-supervised learning approach for color image segmentation

M. Jafari, S. Samavi
{"title":"Iterative semi-supervised learning approach for color image segmentation","authors":"M. Jafari, S. Samavi","doi":"10.1109/IRANIANMVIP.2015.7397508","DOIUrl":null,"url":null,"abstract":"Image segmentation is an important step in many image processing techniques. In this paper, a new semi-supervised approach for color image segmentation is proposed. This method takes advantage of a limited human assistant. After an unsupervised segmentation stage, classes of some regions are questioned from the user. These user hints are used as an initial sample data and will be iteratively expanded based on the existing relevancy between adjacent pixels. This relevancy is measured by probabilities calculated by a classifier which has learned the existing samples prior to that iteration. The learner is a multinomial logistic regression (MLR) classifier. The extended seed is used for training of a support vector machine (SVM) classifier in order to perform the final segmentation. The result of this segmentation fulfills the intention of the user and extracts the targeted classes. Experimental results show that our proposed method makes a noticeable improvement in the accuracy with respect to comparable algorithms.","PeriodicalId":326511,"journal":{"name":"2015 9th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2015.7397508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Image segmentation is an important step in many image processing techniques. In this paper, a new semi-supervised approach for color image segmentation is proposed. This method takes advantage of a limited human assistant. After an unsupervised segmentation stage, classes of some regions are questioned from the user. These user hints are used as an initial sample data and will be iteratively expanded based on the existing relevancy between adjacent pixels. This relevancy is measured by probabilities calculated by a classifier which has learned the existing samples prior to that iteration. The learner is a multinomial logistic regression (MLR) classifier. The extended seed is used for training of a support vector machine (SVM) classifier in order to perform the final segmentation. The result of this segmentation fulfills the intention of the user and extracts the targeted classes. Experimental results show that our proposed method makes a noticeable improvement in the accuracy with respect to comparable algorithms.
彩色图像分割的迭代半监督学习方法
图像分割是许多图像处理技术中的一个重要步骤。提出了一种新的半监督彩色图像分割方法。这种方法利用了有限的人类助手。经过一个无监督分割阶段后,用户对部分区域的分类进行质疑。这些用户提示被用作初始样本数据,并将基于相邻像素之间的现有相关性进行迭代扩展。这种相关性是由分类器计算的概率来衡量的,分类器在迭代之前已经学习了现有的样本。该学习器是一个多项式逻辑回归(MLR)分类器。扩展种子用于训练支持向量机(SVM)分类器,以执行最终的分割。这种分割的结果满足了用户的意图,并提取了目标类。实验结果表明,与同类算法相比,该方法的准确率有了明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信