The Complexity of the Ideal Membership Problem for Constrained Problems Over the Boolean Domain

M. Mastrolilli
{"title":"The Complexity of the Ideal Membership Problem for Constrained Problems Over the Boolean Domain","authors":"M. Mastrolilli","doi":"10.1145/3449350","DOIUrl":null,"url":null,"abstract":"Given an ideal I and a polynomial f the Ideal Membership Problem (IMP) is to test if f ϵ I. This problem is a fundamental algorithmic problem with important applications and notoriously intractable. We study the complexity of the IMP for combinatorial ideals that arise from constrained problems over the Boolean domain. As our main result, we identify the borderline of tractability. By using Gröbner bases techniques, we extend Schaefer’s dichotomy theorem [STOC, 1978] which classifies all Constraint Satisfaction Problems (CSPs) over the Boolean domain to be either in P or NP-hard. Moreover, our result implies necessary and sufficient conditions for the efficient computation of Theta Body Semi-Definite Programming (SDP) relaxations, identifying therefore the borderline of tractability for constraint language problems. This article is motivated by the pursuit of understanding the recently raised issue of bit complexity of Sum-of-Squares (SoS) proofs [O’Donnell, ITCS, 2017]. Raghavendra and Weitz [ICALP, 2017] show how the IMP tractability for combinatorial ideals implies bounded coefficients in SoS proofs.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Given an ideal I and a polynomial f the Ideal Membership Problem (IMP) is to test if f ϵ I. This problem is a fundamental algorithmic problem with important applications and notoriously intractable. We study the complexity of the IMP for combinatorial ideals that arise from constrained problems over the Boolean domain. As our main result, we identify the borderline of tractability. By using Gröbner bases techniques, we extend Schaefer’s dichotomy theorem [STOC, 1978] which classifies all Constraint Satisfaction Problems (CSPs) over the Boolean domain to be either in P or NP-hard. Moreover, our result implies necessary and sufficient conditions for the efficient computation of Theta Body Semi-Definite Programming (SDP) relaxations, identifying therefore the borderline of tractability for constraint language problems. This article is motivated by the pursuit of understanding the recently raised issue of bit complexity of Sum-of-Squares (SoS) proofs [O’Donnell, ITCS, 2017]. Raghavendra and Weitz [ICALP, 2017] show how the IMP tractability for combinatorial ideals implies bounded coefficients in SoS proofs.
布尔域上约束问题的理想隶属度问题的复杂性
给定一个理想I和一个多项式f,理想隶属度问题(IMP)就是检验f是否为λ I。这个问题是一个具有重要应用的基本算法问题,也是众所周知的棘手问题。我们研究了布尔域上由约束问题产生的组合理想的IMP的复杂度。作为我们的主要结果,我们确定了可处理性的边界。通过使用Gröbner基技术,我们扩展了Schaefer的二分定理[STOC, 1978],该定理将布尔域上的所有约束满足问题(csp)分类为P或NP-hard。此外,我们的结果暗示了有效计算Theta体半确定规划(SDP)松弛的充分必要条件,从而确定了约束语言问题的可跟踪性边界。本文的动机是为了理解最近提出的平方和(so)证明的位复杂性问题[O 'Donnell, ITCS, 2017]。Raghavendra和Weitz [ICALP, 2017]展示了组合理想的IMP可跟踪性如何在SoS证明中隐含有界系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信