Sensor and classifier fusion for outdoor obstacle detection: an application of data fusion to autonomous off-road navigation

C. Dima, N. Vandapel, M. Hebert
{"title":"Sensor and classifier fusion for outdoor obstacle detection: an application of data fusion to autonomous off-road navigation","authors":"C. Dima, N. Vandapel, M. Hebert","doi":"10.1109/AIPR.2003.1284281","DOIUrl":null,"url":null,"abstract":"This paper describes an approach for using several levels of data fusion in the domain of autonomous off-road navigation. We are focusing on outdoor obstacle detection, and we present techniques that leverage on data fusion and machine learning for increasing the reliability of obstacle detection systems. We are combining color and IR imagery with range information from a laser range finder. We show that in addition to fusing data at the pixel level, performing high level classifier fusion is beneficial in our domain. Our general approach is to use machine learning techniques for automatically deriving effective models of the classes of interest (obstacle and non-obstacle for example). We train classifiers on different subsets of the features we extract from our sensor suite and show how different classifier fusion schemes can be applied for obtaining a multiple classifier system that is more robust than any of the classifiers presented as input. We present experimental results we obtained on data collected with both the Experimental Unmanned Vehicle (XUV) and a CMU developed robotic vehicle.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper describes an approach for using several levels of data fusion in the domain of autonomous off-road navigation. We are focusing on outdoor obstacle detection, and we present techniques that leverage on data fusion and machine learning for increasing the reliability of obstacle detection systems. We are combining color and IR imagery with range information from a laser range finder. We show that in addition to fusing data at the pixel level, performing high level classifier fusion is beneficial in our domain. Our general approach is to use machine learning techniques for automatically deriving effective models of the classes of interest (obstacle and non-obstacle for example). We train classifiers on different subsets of the features we extract from our sensor suite and show how different classifier fusion schemes can be applied for obtaining a multiple classifier system that is more robust than any of the classifiers presented as input. We present experimental results we obtained on data collected with both the Experimental Unmanned Vehicle (XUV) and a CMU developed robotic vehicle.
传感器与分类器融合户外障碍物检测:数据融合在自主越野导航中的应用
本文介绍了一种在自主越野导航领域使用多级数据融合的方法。我们专注于户外障碍物检测,我们展示了利用数据融合和机器学习来提高障碍物检测系统可靠性的技术。我们正在将彩色和红外图像与激光测距仪的距离信息相结合。我们表明,除了在像素级融合数据外,在我们的领域中进行高级分类器融合是有益的。我们的一般方法是使用机器学习技术自动导出感兴趣类别的有效模型(例如障碍和非障碍)。我们在从传感器套件中提取的特征的不同子集上训练分类器,并展示了如何应用不同的分类器融合方案来获得比作为输入的任何分类器更鲁棒的多分类器系统。我们介绍了我们在实验无人驾驶车辆(XUV)和CMU开发的机器人车辆收集的数据上获得的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信