An Overview of the Proof

C. Haesemeyer, C. Weibel
{"title":"An Overview of the Proof","authors":"C. Haesemeyer, C. Weibel","doi":"10.23943/princeton/9780691191041.003.0001","DOIUrl":null,"url":null,"abstract":"This chapter provides the main steps in the proof of Theorems A and B regarding the norm residue homomorphism. It also proves several equivalent (but more technical) assertions in order to prove the theorems in question. This chapter also supplements its approach by defining the Beilinson–Lichtenbaum condition. It thus begins with the first reductions, the first of which is a special case of the transfer argument. From there, the chapter presents the proof that the norm residue is an isomorphism. The definition of norm varieties and Rost varieties are also given some attention. The chapter also constructs a simplicial scheme and introduces some features of its cohomology. To conclude, the chapter discusses another fundamental tool—motivic cohomology operations—as well as some historical notes.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691191041.003.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter provides the main steps in the proof of Theorems A and B regarding the norm residue homomorphism. It also proves several equivalent (but more technical) assertions in order to prove the theorems in question. This chapter also supplements its approach by defining the Beilinson–Lichtenbaum condition. It thus begins with the first reductions, the first of which is a special case of the transfer argument. From there, the chapter presents the proof that the norm residue is an isomorphism. The definition of norm varieties and Rost varieties are also given some attention. The chapter also constructs a simplicial scheme and introduces some features of its cohomology. To conclude, the chapter discusses another fundamental tool—motivic cohomology operations—as well as some historical notes.
证明概述
本章给出了关于范数剩余同态的定理A和定理B的证明的主要步骤。为了证明所讨论的定理,它还证明了几个等价的(但更技术性的)断言。本章还通过定义Beilinson-Lichtenbaum条件来补充其方法。因此,它从第一次裁减开始,第一次裁减是转移论点的一个特殊情况。在此基础上,本章给出了范数剩余是同构的证明。规范品种和Rost品种的定义也得到了一定的重视。本章还构造了一个简化方案,并介绍了其上同调的一些特征。最后,本章讨论了另一个基本工具-动机上同操作-以及一些历史注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信